Testing General Linear Constraints on the Regression Coefficient Vector: A Note

Ki-Jun Jeong*

Consider a linear model with n observations and k explanatory variables:

(1)
$$y=X\beta+u$$
, $u\sim N(0, \sigma^2I_n)$.

We assume that the model satisfies the ideal conditions. Consider the general linear constraints on regression coefficient vector:

(2)
$$R\beta = r$$
,

where R and r are known matrices of orders $q \times k$ and $q \times 1$ respectively, and the rank of R is q < k. We also assume n > k+q. Without loss of generality R can be partitioned as $R = (R_1 \ R_2)$, where R_2 is a $q \times q$ nonsingular matrix so that

$$R\beta = (R_1 \ R_2) \left[egin{array}{c} eta_1 \ eta_2 \end{array}
ight] = R_1 eta_1 + R_2 eta_2 = r$$
,

or,

(3)
$$\beta_2 = -R_2^{-1}R_1\beta_1 + R_2^{-1}r$$
.

Therefore, under the constraints (2) or (3), (1) can be written as

$$y = X\beta + u = (X_1 \ X_2) \left[\begin{array}{c} eta_1 \\ eta_2 \end{array} \right] + u = X_2 R_2^{-1} r + X R^* \beta_1 + u,$$

or,

(4)
$$y^* = X^* \beta_1 + u$$
,

where

$$R^* = \begin{bmatrix} I_{k-q} \\ -R_2^{-1}R_1 \end{bmatrix}$$

$$y^* = y - X_2R_2^{-1}r$$

and $X^* = XR^*$.

Now, we have the following lemma:

^{*}Department of Economics, Seoul National University

Lemma: Let R^* be a $k \times k_1$ matrix with full column rank $k_1 < k$, and let $X^* = XR^*$, where X is an $n \times k$ matrix with full column rank. Define $M = I - X(X'X)^{-1}X'$ and $M^* = I - X^*(X^*X^*)^{-1}X^{*'}$. Then M and $M^* - M$ are symmetric idempotent matrices with ranks n - k and $k - k_1$, respectively, and $M \cdot (M^* - M) = 0$. (See Fisher [1].)

Proof: Notice

$$X^*(X^{*\prime}X^*)^{-1}X^{*\prime}X(X^{\prime}X)^{-1}X^{\prime} = X^*(X^{*\prime}X^*)^{-1}R^{*\prime}X^{\prime}X(X^{\prime}X)^{-1}X^{\prime}$$
$$= X^*(X^{*\prime}X^*)^{-1}R^{*\prime}X^{\prime} = X^*(X^{*\prime}X^*)^{-1}X^{*\prime},$$

then the proof is straightforward.

We can easily verify that X, R^* and X^* in (4) satisfy the conditions of the lemma with $k_1=k-q$, or,

 $q=k-k_1$. Therefore,

(5)
$$y^*'My^*=y'My=u'Mu$$

is distributed as $\sigma^2 \chi^2(n-k)$, and

(6)
$$y^{*'}(M^*-M)y^*=u'(M^*-M)u$$

is independently distributed as $\sigma^2 \chi^2(q)$ under the constraints (2). (The equalities in (5) and (6) follow from the fact that MX=0, and $MX_2=0$.) Therefore

(7)
$$F = \frac{y^{*'}(M^* - M)y^*/q}{y^{*'}My^*/(n-k)}$$

is distributed as F(q, n-k) under the constraints (2). If we denote the LS residual vectors, My of (1) and M^*y^* of (4), by e and e^* , respectively, then (7) becomes

(7)'
$$F = \frac{(e^{*'}e^{*} - e'e)/q}{e'e/(n-k)}$$

Therefore, using (7) or (7)', we can test any hypothesis given by, or reducible to, the constraints (2).

REFERENCES

[1] Fisher, F.M., "Tests of Equality between Sets of Coefficients in Two Linear Regressions: An Expository Note," Econometrica, 38 (1970), 361-366.
[2] Theil, H., Principles of Econometrics. New York; Wiley, 1971.