On the CMCase Activity from Two species of Trichosporon

Trichosporon의 CMCase 활성에 관하여

  • 전순배 (전북대학교 문리과대학 생물학과) ;
  • 박종영 (전북대학교 문리과대학 생물학과)
  • Published : 1979.12.01

Abstract

Dennis (1972) reported that Trichosporon cutaneum FRI-425 from the petioles of Pheum rhamponticum var, had showed the celluloytic activity. Chun (1977) also suggested that Trichoporon pullulons 225 isolated from the saline water of the Yeoung San River had a similar properties. However, the assay conditions for enzyme activity were not yet investigated. Thus, the present work was undertaken to examine some conditions for CMCase activity and at the same time to compare the activities of crude enzyme produce from above two species of Trichosporon pullulans. The results are as follows; 1. The maximum production of total reducing sugar by crude enzyme of Tr. pululans was after 30 minutes, whereas that of Tr. cutanuem FRI-425 was after 90 minutes. This fact showed that the reaction velocity of enzyme from Tr. pullulans 225 was more faster than that of Tr. cutaneum FRI-425. 2. Two species showed a similar trend to increase the production of reducing sugar in proportion to the increment in substrate concentration and to arrive at maximum level at lmg/ml of substrate concentration. However, Tr. pullulans 225 produced more $50{\mu}g$ of reducing sugar compared to Tr. cutaneum. 3. The optimum PH for CMCase activity is 5.0 for Tr. pullulans 225 as well as Tr. cutaneum FRI-425, and PH stability lie within the range of 6 and 8. In the activity and stability of enzyme on PH changes, enzyme of Tr. cutaneum FRI-425 was more unstable than that of TY. pullulans 225. 4. The optimum temperature for CMCase activity was $40^{\circ}C$, and enzyme activity from Tr. pullulans 225 was more sensitive to temperature changes compared with that of TY. cutaneum. The heat stability was within $40^{\circ}C$, but that was rapidly decreased above $40^{\circ}C$. In comparison of the heat stability for enzyme of Tr. cutaneum FRI-425 with that of Tr. pullulans 225 at the same temperature of $80^{\circ}C$, the former was some 10 percent more stable than the latter.

Keywords