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ON THE GAME OF GO
By Jin Bai Kim

1. Introduction

There are books ([3], [5]) for persons who want to know, practically, how to
play the game of Go. There are books for persons who want to improve therir
skill (see [7], [17], [24]). E. Thorp ([25], [26], [27]), W. Walden _([25],'[27]),;A.
Zobrist [29] and D. B. Benson([1], {2]) have studied Go-game in connection with
the computer science. We first give a definition of a Go-game using graphs. Then
we give a definition of a three person Go-game and discuss probléms of Go-games.
The final part of this paper has a theorem (which is a kind of minimax
theorems) on an upper bound of number of stones with which every Go-game
can be played without exchanging black and white stones during the paly time.

2. The two person Go-game on a 2-dimensional board

We define a Go game by using mappings and graphs. Let Z 4 be the set of
all positive integers. Let n,&€Z , with #*=6 (1=1,2). Let [ ‘= nesZ + - n=n;} and
let B=I,X1,. B will be called the go-board. (i,jDEB is called a point or an
intersection. Let S=1{b, w} be a set ofhtwo distinct objects. (We call & a black
store and w a white stone.) If (y,a) is a member of yXB, then (y,a) is called
a verlex wilh y- -color or a y-vertex (yES). | | | _‘ N '

Let a,=(, j) and ¢,=(s,k) be two members of B. ¢, and a,are adjacent if

one the followmg_ conditions holds,

(1) s=7+1 and j==~. (2) i=s+1 and j=k.
(3) k=j+1 and i=s. (4) j=k+1 and i=s.
(6) s=i+1 and A=s5+1. (6) i=s+1 and k=j-+1.
(7) s=i+1 and j=4A+1. (8) i=s+1 and k=s+1,

a,—a, means that ¢, and @, are adjacent and @,7¢? means that a' and “2 are

not ad Jacent

DEFINITION 1. Az edge. Let y=S. Let v,=(y, ¢ )EyXB(=1, 2). _(vl, v,) is
said to be an edge if a,— ‘72 For v =(y,a,), define ¢(v;)=a,EB.
Any subset G(¥) of yXB becomes a graph by the definition of an edge, and
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G(y) is called a y-graph or a graph of y-stomes. G(yXB) denotes the set of - all
y-graphs. For G(y) in G(yXB), define c¢(G(¥))={c(») : v is a vertex of G{y)}.
Let v,=(y,a,) and vm=(y,‘dm) be two vertices of ‘G(¥). v, and v, are cornected
if there exists a sequence (y.faz-_)(z'zz, 3, --,m—1) of vertices (y,a;) of G(y) such
that ¢.—a, 41 =12, ,m—1). ‘G(y) is said to be comnecied if any two vertices
of G(y) are connected. Define |G(y)|=m as the total number of vertices of G(y)
and will be called the order of G(¥).
Define A\B=1{#€A : x&B} for any two sets 4 and B. Let B,={(,))EB 1 i=

or i=n}, B,={({,/))EB: j=1 or j=n:} and B(B)=B;UB,, which may be called

- the border of B.

'DEFINITION 2, A simple closed gmﬁk.,“A f_:onn_ected graph G(y)_= {(y, ‘3?:) ]
=1,2,+, m} of order m=|G(»)|=3 is said to be a simple connected graph
r:wz'tk two terminal vertices (3,a,) and(y, a, ) if “1 is not adjacent with a
and if G(y)\(y, a) (l#z;ﬁm) is not a connected graph G(y)={(y, czz)
=1,2} with a@;,—a, (an edge_) 1s also called a szmple conneclted graph. Lét
GC(y)={(»,a) :i=1, 2, -, m} (m=2) Dbe a siinple connected graph with two

terminal vertices (y,al) and (3,¢,). If {a;,a¢ }CB(B), then G(y) is called
a weak simple closed graph. A graph G(y) is said to be a strong simple
closed graph if |G(y)|=4 and if, for all 7,G(¥)\(¥,a;) is a simple connected
graph with two terminal vertices (¥,a;_;) (When t=1, we take m—1 as 7—1)
and (¥,a, +1) (when 7=m we take 1 as m+- 1) CG(yXB) denotes the set of all
weak and strong simple closed y-graphs and any member of CG(yXB) will be
called a simple closed graph (or a simple polygon). Let G(y)ECG(yXB). Then
G(») divides the go-board B into two separated regions R(G(¥)) and R(G(»))
such that R(G()URGHINIUc(G(»))=B and R(GIINRGHINc(G))=4,
the empty set. If a=(,7)ER(G(y)), then we say that the region R(G(¥))
contains 2 point a=(7, 7). (If |R(G(»))| <IR(G(¥))|, then R(G(»)) will be called
the inner (or interior) region of G(») and R(G(»)) will be called the outer

{exterior) region of G(»).

EXAMPLE 1. There are exactly four weak simple closed graphs G(y)=1{(y,c),
(y,d)} of order 2=|G(y)| with one point inner region R(G(y)), where {c,d}=
{(1,2), (2, D}, {e.dt={(n,n,—1), (n,—1, nxd)}, {c,d}=1{(n -1, 1), (»;, 2)} and
{c,d}={(1,n,—-1), (2,n,)}. There is a strong simple_ closed graph G(»)={(y,¢a) -
z2=1,2, 3,4} of order with one point inner region R(G(y))=(+1,7+1), where
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a,=(+1,7), a,=0+2, j+1), a;=(G+1, j+2) and ¢,=(, 7+ 1.

DEFINITION 3. A graph G(x) is completely surrounded by a simple closed
graph G(y). Let G(x) be a graph and let G(Y)ECG(y X B). If ¢(G(x))CR(G(y)),
then we say that G(x) is surrounded by G(y) and we may denote this by
G(x)CG(y). If e¢(G(x)=R(G(y)), then we say that G(x) is completely
surrounded by G(y) and we may denote this by G(y)(G'(x)).

DEFINITION 4. Let G.(y)&CG(yXB) (1=1,2, vee, 1), Suppose that Gs-(_y)CGl(y)
(##1) and ¢(G;(9))CR(G(¥)) (G#i#1). Then the region R(Gl(y)i\;HRCGz.(y)t)?g

: m
«(G,(y)) is called the region of G(y) =_Ule-(y) and we denote that region bv R
1=

1-.-(G(y))=R(_GlG£(y)). Let R(_glGi(y)) be the region of G(y)=_@?z.(y) the union

graph of graphs G;(3). (If a€R(G(»)), then R(G(»U(y,@))=R(G(y))\a is also

«called the region of G'(y»)=G(»)U(y, @), as a special case of R(G(»)). If c¢(G(x))
CR(G(y)), then we say that G(x) is surrounded by G(y) and we may denote
this by G(x)CG(y). If c(G(x))=R(G(y)), then we say that G(x) is complele]y

surrounded by G(y)= L”lei(y) and - we denote this by G(¥)(G(x)). Definition 4
T =
is a generalization of Definition 3.

We now define a Ko.

DEFINITION 5. Ko. Let G(y) be a simple closed graph with the inner region
R(G(y))=(7,7) of one point such that 2=|G(y)|=4. Let xES with x7#y. Let
‘G(x) be a graph such that 1=|G(x)]| =3, c(Gx))Nc(G))=¢, G(x)U(x, (7,71))
iformsla simple closed graph and G(x) is not a simple closed graph. If there
1s a vertex (y,a) of G(¥») such that R(G(x)U(x, (4,/)))=a, in the graph G(x)

Uz, G, 7))UG()ON(,@). Then we say that G(y) and G(x) form a Ko and we
shall denote this by Ko(G(y), G(x), (G,71),(y,a)). We shall also say that Py

(the person with y-stones) iwitiated the Ko. |
G(»)UG(x) is called an (x,y) grapk when c(G(Y))Nc(G(x))=20.

DEFINITION 6. A move Funclion f and a capture fuxnction g. Let G, be a
sequence of (b, w) graphs. Let S°=SU¢@. We define a move: function f .2 L
Z +/S°/B as a function satisfying the following three conditions. (1) f(1)=
(1,Gy), where G;=bXVCOXB. |f(1)] is defined as |V|.
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(2) For all n&sZ 4 -
f(2n— 1) (2n— 1 b,v), a black move by p,,
~ (2n-1,4,v), a pass move by b,
f(2nr)=Cn, w,v), a white move bV p ,
(2n, QS ), a pass move by 1.‘? L

where v&B. We define |f(i)|=1 for a non-pass move and 1f(Z)| =0 for a pass
move for =2, We often write f(z) O for a pass move f(7).

3 If fG+1D=(G+1,x,v) and x7#¢, then v&B\c(G,). (We may identify (1, G >
'=f(-1) with G -_and‘f(z'—lel)=(z'_-l-1 x,v) with (x,7v).) We now define a capture
function g . Z ——*G(bXB)UG(wXB)U;ﬁ by . the following: (4) Let f(7)=C(, x,

) (vEB) If there exists a set {G, (x) i=1,2,,m} of xz-graphs G,(x) in G;,_,,

‘and if there exists a graph G (y) in G 1 such that elther (a) U G. (:c)U(x )

z=1
makes the region R( UG (x)U(x v)) as defmed in Def1n1t10n 4 and UG (x)(G ( y))r

where G, _H--(x ), or (b) G,(x)U(x, v) (z—-l 2, *=*, m) forms a sunple closed
graph and G (x)U(;r v)(G.(y)), where G(y) is a part of G (y) with & (y)=

UG (). Then g()=G (y) (We may say that p, captures a group of y-stones:

of G ,(¥) when g(@)=G,(5).) -
(5) (Suicide is illegal. ) If there is a simple closed graph G (y) in G,_; such

that G,(»)(G, (x)U(x y)) for a graph G (x) in G,_, (¢#y), then 2()=G (x)

Uz, v).
(6) (Suicide is illegal.) If, in G,_ 1, there exists a set {G (y) 1i=1,2, +--, m} of

y-graphs G A(y) and G,(x) such that U G ()G, (x)U(x, v)) (see Definition 4)

then we defﬂme g(@)=G (x)U(x, v). If m=1, then (6) returns to (5). (We may-
say that p_loses a group of x-stones of G (x)U(x,») by his move f(Z).)

(7) If (4),(5) and (6) are not apphcable then g(z) ?. Now we can. define:
a sequence G, inductively : f(1)=(1, Gl) with

|G, |=1. For fG+1)=(+1, x,v), G, ,=G; if 2= d,

G, U(x, )\g(7+1) if x#t;é

We introduce one of important concepts on Go games. Ko-rule. For any graph
G (b, w), R(G(b, w)) denotes the set of all Kos in the (4, w)-graph G(b, w).

(1) If a move f(n)=(n,y,v) forms the first Ko=Ko(G(y), G(x), (7,7, (3, a)).
Then the player px can take a move of the form f(z+1)=(n+1, x, (¢,7))- and
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conéequently gn+1)=0,a). If f(r+1D)=(n+1,z1, (i, f)) and g(n+1)=(y, a), then:
we say that p, moves to the Ko and captures a y-stone of (3,2). Now we have-
G, =G,V (x, (4 7\(y,a). Korule is that the moving f(#n+2)=(n+2,3,4) by
waith g(n+2)=(x, (2,7)) isillegal. Alternative rule is that (Suicide is illegal),
if f(n+2)=®+2,y,a), then g(n+2)=(y,a). Notice that Ko-rule is to make the-
go-game finite.

(2) Suppose that £(G,)=Ko(G(»), G(x), (,1), (3, @), f(n)=(n,y,v) and g(n)#
(x,(,7)). If f(r+1)=(n+1, %, (¢. 7)) and g(n+1)=(y, a), then we say that
P_ moves to the Ko. Suppose that P, moved to the Ko. Then Ko-rule is that the-
move f(n+2)=(n+2, y,a) with g(n'—ll2)=.(x, (Z,7)) by Py(x;éy) to any Ko of Z:
(G, is illegal. If f(m)=(m,y,v) with g(r)=(x, (7)), then a move f(r+1)=
(n+1,%,(,7)) with g(rn+1)=(y, a) is illegal. We generalize this Ko-rule. Let:
m,=1.

(3) Suppose that %(G,)={Ko(G,(¥),G(x), (¢,7), (¥, at)):t=1,2,--r m,} U {Ko(G,
(), G(x), (G, 7)), (x,a)): t=m,+1, m~+2, -, my+m,}. Suppose f(n)=(n,y,v) with-
g(n)#(x, (i, 7)) @€, 2, -, my}). If P_ takes a move toa Ko of k(G,), then a.
move by Py to any Ko in 2(G, —I—l) is illegal. (If f(n+1)=(n+1,x,(7,7,)) with g
(n+1D=(3,a) (€112, -, m}), then f(n+2)=(n+2,3, (i,7)) and f(#+2)=(n+2,
»(E,70) (s&{m +1, m+2, -, m +my}) are both illegal).

DEFINITION 7. The end of the game. The game ends with the final graph.

G, if f(n+1) and f(#+2) are first two consecutive pass moves. We shall say
that the game ends at the move {=n+4+2. For a (b, w)-graph G,, we can write-

G, =GUGw). Let G(NEIG®), Gw)}.

SCORING. Let G =G(b)UG(w) be the final graph of a game. Let 1= {G,(y)::
;&I} be the set of all simple closed y-graphs in G(¥). Let R= {Rj: JE&J} be the-
set of all regions determined by /. We see that R(G,(»)) and R(G,(y)) are:
members of R. (1) Consider R(G.(y))ER. Suppose IR(Gi(y))ﬂc(G(x)l=ml and’
| RG(yDNe(G()) | =my If m=0, then we define (IRG;(¥)I=IR(G,(¥))]-
my 1f m 50, then there exists a graph G,(x) such that ¢(G,(x)) CR(G,(¥))..-
There are two cases. (2) There exists a positive integer % such that by 2 moves.
J(n+2+i) ((=1,2,--,k), it is possible to obtain g(#-+2+%) which contains: G,
(x). This is the case, then we set |[R(G; (3)I|=|R(G,(¥))| —my+nz. (3) If it is:
not possible to obtain such g(z-+2--%) containing G,(x) by a finite nﬁmber (k)
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of moves, then we set [R(G;(»))l[=0. (4) Let R.=R. Suppose that there is a
subset K of I(|K|=2) so that the union graph _ng.(y) makes the region R
1.

( Lej_%(y)) as defined in Definition 4. Then we take | R ﬂe(G(x)) | -—mll and | R Ne

(G(¥))|=m, where R, R( U G L)) I ml—O then we define IRl as HE =

IR | —m,. If m,7#0. Then there exists a graph G,(x) such that (G, (x))CR

We now follow (2) and (3) for R We define ¢ by Cy= Z’ R + g é’((]) as
g(1)eEG(xXB)
the final score of P (x7y). 1f ¢, >c_ then we say that P w1th ¥-stones win the

game by (¢,—c ). - | S e SRR

DEFINITION 8. A two person go-game is a set {f,g, S, B} of a move fﬁnctidﬂf
which obey the Ko-rule, a capture function g, a set S={bw} and a two

s WL

~d1men510nal board B. | T |
- 3. Life and Sekl

We introduce the terms of Safe-and Seki. Let {f, g,S,B} be a two-person
_go game on B with the fmal graph G,=G(B)UGw)., Let Gx)E{G(), G(w)}.
Suppose that there exist a.simple closed x-graph Gl(x) in G(x) and a ¥ graph

£,(y) in G(y) (x7y) such that Gl(y)CGl(x) Let f(n)=(n, x, V).

(1) If a f1n1te number ok of moves f(Z) defined by .. -

f(n 2+7)=a pass move if 7=1,3, -, 28— 1 |
a non-pass (y) move if 7=2,4, -, 25,
with g(n+24+75)=¢ (7 <2k), it is not possible to have g(n 2 2k) Gl(y) Then
we say that G.(y) is Safe. |

(2) If a non-pass move by any player P Jor P ) into a set R(Gl(_i)\c(Gl(y))'
is unfavorable for that player, then we say that G, (%) and Gl(J’) form a Sek:
{27, p.10]. (# can be replaced by k<n). |

4. Examples

We have following examples of go-games.

EXAMPLE 2. Let B=B\{(1,1),(1,2),(2,1)}. Let {f,g,S,B} be a two-person
go-game on B defined by f and g: S
(,b,a,)(a,EB) if i=2n+1 (#=0,1, -, (nn,—4)),
J(i)= a pass move if i=2n (#=1, 2, --(#,n,—4)),
(t=2(nn,~3),w,(1,2)),
a pass move if i=2(nn,—3)+1,
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- (F=2(n; nz—-3)+2 w, (2,1)),
a pass move if 7=2(n;n,—3)+3, 2(n1ﬂ2—3)+4 and
g()=bXB if i=2(nny,—3)+2,
. 0, if i722(n,ny—3)+2.
We can see that |g(@(n#,—3)+2)|=|B|=n,n,—3. Let G be the final graph of
this game. Then G ={(w,(1,2)),(w, (2,1))}. It is not difficult to see that:
n=2(n,n,—2). If this came takes place on B, then the total number #" of

moves of the second game is less than or equal to 2(mn,—4). lf the game

repeatedly takes the place, then the (grand) total number z-+#"-+:- of moves.

from the first game to the last game is less than or equal to
ni\Rs

2(n 11y 2) + Z’ 2(7;:112,—3)

EXAMPLE 3. Let {f,g,S, B} be a go-game. Suppose that # moves f(7) with:
g(@)=¢ (t=1,2, -, n) formed the graph G,=G()UG(w) consisting of Kos. If
P, and P, take moves f(n+7) (=1,2, -+, &) with |g(n+:)| =1 and this game ends.
with the final graph G, tr (after two consecutive pass moves f(r+k+1)=¢ and.
f(r+k+2)=0), then it is not difficult to show that n+k=3(nn,) —4.

EXAMPLE 4. Let {f,g,S, B} be a 2-person go-game on B such that g(?)=¢
for all 7. Then the totai number z of moves is less than or equal to 2#,n,

where # is defined by the final graph &, of the game.

"PROBLEM. (1) Find the total number of stones with which every go-game-
can be played without exchanging black and white stones during the play time.
(2) Find an upper bound of #, where 7 is defined by G,, - the final graph of

the go-game.
o. Three person go-game on a 2-dimensional board

| Let S= {0, bz,b } be a set of three distinct objec:ts b, Let y be a member of”

S Any subset of yXB is cal]ed a y-graph. Let G(b,) be a graph. G= U G(b,)

is called a graph if ¢(G(b,)) ﬂc(G(bz))QCCG(ba)) o, Let G(») bea 31mp1e ClOSEd*

graph and let G(x)UG(y)UG(z) be a graph (%, 9, 2=S). If c(G(x)Uc(G)z)) =
R(G(»)), then we say that G(x)UG(z) 1S completely surrounded by G(y) and
we denote it by G(y)(G(x) UG(2)).

DEFINITION 9. Ko. Let Ko(G,(y), G,(x), (i, 7. (9, a))), Ko(G,(x), G,(2)..
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(I 7o), (x,2,)) and Ko(G,(2), G,(9), (453,75, (2, ay)) be three Kos. Then we say
that these three Kos form'a Ko in a three person go-game on a 2-dimensicnal
board B. We can define a move function f and a capture function g as defined
before. We also can define Ko-rule and SCORING as defined in 2. We define

a three-person go-game on a two-dimensional board B as a set {f, g, {8, b,, 53},5’}
of a move function f, a capture function g, S=1{b;,,, b;} and a two-dimensional

board B. There are problems of Life and Seki. We give an example of a
3-person go-game on a 2-dimensional board B.

EXAMPLE 5. From this example, it shows that Seki is complicated in a
‘3-person go-game on B.
The following theorem is a partial answer to Problem 1.

THEOREM. Let {f, g, {b,,b,,b:}, B} be a three person game of go on B with the
Jiznal graph G,=G(bI)UG,)UG(b). Then IG(bl)[—l—IG(bz)l—HG(bS)l—l—g | g(2) ]
<(n—2)ﬂ1n2.

PROOF. It is clear that lG(bl)l—l-IG(bz)]—l—lG(bB)l <n;%, It is also clear that
gD +1g(@ =0 and |g(3)|=0. The theorem follows from |g()| <#x, for all

1 >3,

REMARK. The above theorem is true for an #s-person go-game on a 2-

-dimensicnal go-toard. The number (z—2)z,%,is not realistic because of # which

'i1s not known. We can define an #-person go-game on an m-dimensional board.
In a 3-person go-game {f, g, {b,w,y}, B}, there will be two cases for f(2): Let
__f(l):(l,Gl) and g(1)=¢, where Glis a subset of 8XB. Case (1). f(2)=(2, w,v)=
(2, (w, ) with g(2)=¢, where vEB\c(Gl). Case (2). f2=02,w,V)=(02, Gw))
with g(2)=¢, where G(w)=wXV and VCB\c(G,).

The author presented this paper to the Fourth Annual Mathematics and
‘Statistics Conference, Recreational Mathematics, Miami University, Oxford,
*Ohio, September 24, 1976.

West Virginia University
Morgantown, W. Va. 26505
U. S. A.
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