Kyungpook Math. J. Volume 18, Number 1 June, 1978

ON THE GAME OF GO

By Jin Bai Kim

· . -

1. Introduction

There are books ([3], [5]) for persons who want to know, practically, how to play the game of Go. There are books for persons who want to improve therir skill (see [7], [17], [24]). E. Thorp ([25], [26], [27]), W. Walden ([25], [27]), A. Zobrist [29] and D. B. Benson([1], [2]) have studied Go-game in connection with the computer science. We first give a definition of a Go-game using graphs. Then we give a definition of a three person Go-game and discuss problems of Go-games. The final part of this paper has a theorem (which is a kind of minimax theorems) on an upper bound of number of stones with which every Go-game can be played without exchanging black and white stones during the paly time.

2. The two person Go-game on a 2-dimensional board

We define a Go game by using mappings and graphs. Let Z_+ be the set of all positive integers. Let $n_i \in \mathbb{Z}_+$ with $n^i \ge 6$ (i=1,2). Let $I^i = \{n \in \mathbb{Z}_+ : n \le n_i\}$ and let $B = I_1 \times I_2$. B will be called the go-board. $(i,j) \in B$ is called a point or an

intersection. Let $S = \{b, w\}$ be a set of two distinct objects. (We call b a black stone and w a white stone.) If (y, a) is a member of $y \times B$, then (y, a) is called a vertex with y-color or a y-vertex ($y \in S$).

Let $a_1 = (i, j)$ and $a_2 = (s, k)$ be two members of B. a_1 and a_2 are adjacent if one the following conditions holds:

(1) s=i+1 and j=k. (2) i=s+1 and j=k. (3) k=j+1 and i=s. (4) j=k+1 and i=s. (5) s=i+1 and k=j+1. (6) i=s+1 and k=j+1. (7) s=i+1 and j=k+1. (8) i=s+1 and k=j+1.

 $a_1 - a_2$ means that a_1 and a_2 are adjacent and $a_1 \neq a^2$ means that a^1 and a_2 are not adjacent.

DEFINITION 1. An edge. Let $y \in S$. Let $v_i = (y, a_i) \in y \times B(i=1, 2)$. (v_1, v_2) is said to be an edge if $a_1 - a_2$. For $v_1 = (y, a_1)$, define $c(v_1) = a_1 \in B$. Any subset G(y) of $y \times B$ becomes a graph by the definition of an edge, and

G(y) is called a y-graph or a graph of y-stones. $G(y \times B)$ denotes the set of all y-graphs. For G(y) in $G(y \times B)$, define $c(G(y)) = \{c(v) : v \text{ is a vertex of } G(y)\}$. Let $v_1 = (y, a_1)$ and $v_m = (y, a_m)$ be two vertices of G(y). v_1 and v_m are connected if there exists a sequence $(y, a_i)(i=2, 3, \dots, m-1)$ of vertices (y, a_i) of G(y) such that $a_i - a_{i+1}$ $(i=1, 2, \dots, m-1)$. G(y) is said to be connected if any two vertices of G(y) are connected. Define |G(y)| = m as the total number of vertices of G(y) and will be called the order of G(y).

Define $A \setminus B = \{x \in A : x \notin B\}$ for any two sets A and B. Let $B_1 = \{(i, j) \in B : i = 1$ or $i = n_1\}$, $B_2 = \{(i, j) \in B : j = 1 \text{ or } j = n_2\}$ and $B(B) = B_1 \cup B_2$, which may be called the *border* of B.

DEFINITION 2. A simple closed graph. A connected graph $G(y) = \{(y, a_i) : i\}$ =1,2,..., m} of order $m = |G(y)| \ge 3$ is said to be a simple connected graph with two terminal vertices (y, a_1) and (y, a_m) if a_1 is not adjacent with a_m and if $G(y) \setminus (y, a_i)$ $(1 \neq i \neq m)$ is not a connected graph. $G(y) = \{(y, a_i) : i \}$ =1,2] with $a_1 - a_2$ (an edge) is also called a simple connected graph. Let $G(y) = \{(y, a_i) : i = 1, 2, \dots, m\}$ $(m \ge 2)$ be a simple connected graph with two terminal vertices (y, a_1) and (y, a_m) . If $\{a_1, a_m\} \subset B(B)$, then G(y) is called a weak simple closed graph. A graph G(y) is said to be a strong simple closed graph if $|G(y)| \ge 4$ and if, for all $i, G(y) \setminus (y, a_i)$ is a simple connected graph with two terminal vertices (y, a_{i-1}) (when i=1, we take m-1 as i-1) and (y, a_{i+1}) (when i = m we take 1 as m+1). $CG(y \times B)$ denotes the set of all weak and strong simple closed y-graphs and any member of $CG(y \times B)$ will be called a simple closed graph (or a simple polygon). Let $G(y) \in CG(y \times B)$. Then G(y) divides the go-board B into two separated regions R(G(y)) and R(G(y))such that $R(G(y) \cup \overline{R}(G(y)) \cup c(G(y)) = B$ and $R(G(y)) \cap \overline{R}(G(y)) \cap c(G(y)) = \phi$, the empty set. If $a=(i,j)\in R(G(y))$, then we say that the region R(G(y))contains a point a=(i,j). (If $|R(G(y))| < |\overline{R}(G(y))|$, then R(G(y)) will be called the inner (or interior) region of G(y) and $\overline{R}(G(y))$ will be called the outer (exterior) region of G(y).

EXAMPLE 1. There are exactly four weak simple closed graphs $G(y) = \{(y, c), (y, d)\}$ of order 2 = |G(y)| with one point inner region R(G(y)), where $\{c, d\} = \{(1, 2), (2, 1)\}, \{c, d\} = \{(n_1, n_2-1), (n_1-1, n_2)\}, \{c, d\} = \{(n_1-1, 1), (n_1, 2)\}$ and $\{c, d\} = \{(1, n_2-1), (2, n_2)\}$. There is a strong simple closed graph $G(y) = \{(y, a_i): i=1, 2, 3, 4\}$ of order with one point inner region R(G(y)) = (i+1, j+1), where

 $a_1 = (i+1, j), a_2 = (i+2, j+1), a_3 = (i+1, j+2) \text{ and } a_4 = (i, j+1).$

DEFINITION 3. A graph G(x) is completely surrounded by a simple closed graph G(y). Let G(x) be a graph and let $G(y) \in CG(y \times B)$. If $c(G(x)) \subset R(G(y))$, then we say that G(x) is surrounded by G(y) and we may denote this by $G(x) \subset G(y)$. If c(G(x)) = R(G(y)), then we say that G(x) is completely surrounded by G(y) and we may denote this by G(y)(G(x)).

DEFINITION 4. Let $G_i(y) \in CG(y \times B)$ $(i=1,2,\dots,m)$. Suppose that $G_i(y) \subset G_1(y)$ $(i \neq 1)$ and $c(G_i(y)) \subset \overline{R}(G_i(y))$ $(j \neq i \neq 1)$. Then the region $R(G_1(y) \setminus \bigcup_{\substack{i \neq 1 \\ i \neq 1}} R(G_i(y)) \cup_{\substack{i \neq$

 $C(G_i(y))$ is called the *region* of $G(y) = \bigcup_{i=1}^{m} G_i(y)$ and we denote that region by R

 $(G(y))=R(\bigcup_{i=1}^{m}G_{i}(y))$. Let $R(\bigcup_{i=1}^{m}G_{i}(y))$ be the region of $G(y)=\bigcup_{i=1}^{m}G_{i}(y)$ the union graph of graphs $G_i(y)$. (If $a \in R(G(y))$, then $R(G(y) \cup (y, a)) = R(G(y)) \setminus a$ is also called the region of $G'(y) = G(y) \cup (y, a)$, as a special case of R(G(y)). If c(G(x))CR(G(y)), then we say that G(x) is surrounded by G(y) and we may denote this by $G(x) \subset G(y)$. If c(G(x)) = R(G(y)), then we say that G(x) is completely surrounded by $G(y) = \bigcup_{i=1}^{m} G_i(y)$ and we denote this by G(y)(G(x)). Definition 4 is a generalization of Definition 3.

We now define a Ko.

DEFINITION 5. Ko. Let G(y) be a simple closed graph with the inner region R(G(y)) = (i, j) of one point such that $2 \le |G(y)| \le 4$. Let $x \in S$ with $x \ne y$. Let G(x) be a graph such that $1 \leq |G(x)| \leq 3$, $c(G(x)) \cap c(G(y)) = \phi$, $G(x) \cup (x, (i, j))$ forms a simple closed graph and G(x) is not a simple closed graph. If there is a vertex (y,a) of G(y) such that $R(G(x)) \cup (x,(i,j)) = a$, in the graph G(x) $U(x,(i,j))\cup G(y)\setminus (y,a)$. Then we say that G(y) and G(x) form a Ko and we shall denote this by Ko(G(y), G(x), (i,j), (y,a)). We shall also say that P_y (the person with y-stones) *initiated* the Ko.

DEFINITION 6. A move Function f and a capture function g. Let G_i be a sequence of (b, w) graphs. Let $S^\circ = S \cup \phi$. We define a move function $f: Z_+ \longrightarrow$ $Z_+/S^{\circ}/B$ as a function satisfying the following three conditions. (1) f(1) =(1, G_1), where $G_1 = b \times V \subset b \times B$. |f(1)| is defined as |V|.

 $G(y) \cup G(x)$ is called an (x, y) graph when $c(G(y)) \cap c(G(x)) = \phi$.

(2) For all n∈Z₊,
f(2n-1)=(2n-1, b, v), a black move by p_b,
(2n-1, φ, v), a pass move by p_b,
f(2n)=(2n, w, v), a white move by p_w,
(2n, φ, v), a pass move by p_w,
where v∈B. We define |f(i)|=1 for a non-pass move and |f(i)|=0 for a pass

move for $i \ge 2$. We often write $f(i) = \phi$ for a pass move f(i).

(3) If f(i+1)=(i+1, x, v) and $x \neq \phi$, then $v \in B \setminus c(G_i)$. (We may identify $(1, G_1)^{i-1} = f(1)$ with G_1 and f(i+1)=(i+1, x, v) with (x, v).) We now define a capture function $g: Z_+ \longrightarrow G(b \times B) \cup G(w \times B) \cup \phi$ by the following: (4) Let f(i)=(i, x, v) ($v \in B$). If there exists a set $\{G_i(x): i=1, 2, \cdots, m\}$ of x-graphs $G_i(x)$ in G_{i-1} and if there exists a graph $G_o(y)$ in G_{i-1} such that either (a) $\bigcup_{i=1}^m G_i(x) \cup (x, y)^{i-1}$ makes the region $R(\bigcup_{i=1}^m G_i(x) \cup (x, v))$ as defined in Definition 4 and $\bigcup_{i=1}^m G_i(x)(G_o(y))$, where $G_{i+1}=(x,v)$, or (b) $G_i(x) \cup (x,v)$ ($i=1, 2, \cdots, m$) forms a simple closed graph and $G_i(x) \cup (x,v)(G_i(y))$, where $G_i(y)$ is a part of $G_o(y)$ with $G_o(y)=\bigcup_{i=1}^m G_i(y)$. Then $g(i)=G_o(y)$. (We may say that p_x captures a group of y-stones of $G_o(y)$ when $g(i)=G_o(y)$.)

(5) (Suicide is illegal.) If there is a simple closed graph $G_o(y)$ in G_{i-1} such that G(y)(G(x)||(x, y)) for a graph G(x) in $G_{i-1}(x \neq y)$, then g(i)=G(x).

that
$$G_o(y)(G_o(x)\cup(x, y))$$
 for a graph $G_o(x)$ in G_{i-1} $(x \neq y)$, then $g(i) = G_o(x)$
 $\bigcup(x, v)$.
(6) (Suicide is illegal.) If, in G_{i-1} , there exists a set $\{G_i(y): i=1, 2, \dots, m\}$ of
y-graphs $G_i(y)$ and $G_o(x)$ such that $\bigcup_{i=1}^m G_i(y)(G_o(x)\cup(x, v))$ (see Definition 4),
then we define $g(i) = G_o(x) \cup (x, v)$. If $m=1$, then (6) returns to (5). (We may
say that p_x loses a group of x-stones of $G_o(x) \cup (x, v)$ by his move $f(i)$.)
(7) If (4), (5) and (6) are not applicable, then $g(i) = \phi$. Now we can define
a sequence G_i inductively : $f(1) = (1, G_1)$ with
 $|G_1| \ge 1$. For $f(i+1) = (i+1, x, v)$, $G_{i+1} = G_i$ if $x = \phi$,
 $G_i \cup (x, v) \setminus g(i+1)$ if $x \neq \phi$.

We introduce one of important concepts on Go games. Ko-rule. For any graph
G (b, w), k(G(b, w)) denotes the set of all Kos in the (b, w)-graph G(b, w).
(1) If a move f(n)=(n, y, v) forms the first Ko=Ko(G(y), G(x), (i, j), (y, a)).
Then the player px can take a move of the form f(n+1)=(n+1, x, (i, j)) and

consequently g(n+1) = (y, a). If f(n+1) = (n+1, x, (i, j)) and g(n+1) = (y, a), then: we say that p_r moves to the Ko and captures a y-stone of (y, a). Now we have- $G_{n+1}=G_n \cup (x,(i,j)) \setminus (y,a)$. Ko-rule is that the moving f(n+2)=(n+2,y,a) by P_{v} with g(n+2)=(x,(i,j)) is illegal. Alternative rule is that (Suicide is illegal), if f(n+2) = (n+2, y, a), then g(n+2) = (y, a). Notice that Ko-rule is to make thego-game finite.

(2) Suppose that $k(G_n) = Ko(G(y), G(x), (i, j), (y, a)), f(n) = (n, y, v)$ and $g(n) \neq -$ (x, (i, j)). If f(n+1) = (n+1, x, (i, j)) and g(n+1) = (y, a), then we say that P_x moves to the Ko. Suppose that P_x moved to the Ko. Then Ko-rule is that the move f(n+2) = (n+2, y, a) with g(n+2) = (x, (i, j)) by $P_y(x \neq y)$ to any Ko of k. (G_{n+1}) is illegal. If f(n) = (n, y, v) with g(n) = (x, (i, j)), then a move f(n+1) = (x, (i, j))(n+1, x, (i, j)) with g(n+1) = (y, a) is illegal. We generalize this Ko-rule. Let: $m_1 \ge 1$.

(3) Suppose that $k(G_n) = \{ Ko(G_t(y), G_t(x), (i_t, j_t), (y, a_t)) : t = 1, 2, \dots, m_1 \} \cup \{ Ko(G_t) \}$ $(y), G_t(x), (i_t, j_t), (x, a_t)): t = m_1 + 1, m_1 + 2, \dots, m_1 + m_2$. Suppose f(n) = (n, y, v) with $g(n) \neq (x, (i_r, j_r))$ ($t \in \{1, 2, \dots, m_1\}$). If P_r takes a move to a Ko of $k(G_n)$, then a. move by P_v to any Ko in $k(G_{n+1})$ is illegal. (If $f(n+1) = (n+1, x, (i_t, j_t))$ with g $(n+1)=(y, a_t)$ ($t \in \{1, 2, \dots, m_1\}$), then $f(n+2)=(n+2, y, (i_t, j_t))$ and $f(n+2)=(n+2, y, (i_t, j_t))$ $y_1(i_s, j_s))$ ($s \in \{m_1+1, m_1+2, \dots, m_1+m_2\}$) are both illegal).

DEFINITION 7. The end of the game. The game ends with the final graph.

 G_n if f(n+1) and f(n+2) are first two consecutive pass moves. We shall say that the game ends at the move t=n+2. For a (b, w)-graph G_n , we can write- $G_n = G(b) \cup G(w)$. Let $G(y) \in \{G(b), G(w)\}$.

SCORING. Let $G_n = G(b) \cup G(w)$ be the final graph of a game. Let $\Pi = \{G_i(y) : i \}$ $i \in I$ be the set of all simple closed y-graphs in G(y). Let $R = \{R_j : j \in J\}$ be the set of all regions determined by Π . We see that $R(G_i(y))$ and $\overline{R}(G_i(y))$ are members of R. (1) Consider $R(G_i(y)) \in \mathbb{R}$. Suppose $|R(G_i(y)) \cap c(G(x))| = m_1$ and $|R(G_i(y)) \cap c(G(y))| = m_2$. If $m_1 = 0$, then we define $(||RG_i(y))|| = |R(G_i(y))| - |R(G_i(y))|| = |R(G_i(y))| - |R(G_i(y))|| = |R(G_$ m_2 . If $m_1 \neq 0$, then there exists a graph $G_t(x)$ such that $c(G_t(x)) \subset R(G_i(y))$. There are two cases. (2) There exists a positive integer k such that by k moves f(n+2+i) $(i=1,2,\dots,k)$, it is possible to obtain g(n+2+k) which contains G_{t} (x). This is the case, then we set $||R(G_i(y))|| = |R(G_i(y))| - m_2 + m_1$. (3) If it is: not possible to obtain such g(n+2+k) containing $G_t(x)$ by a finite number (k).

of moves, then we set $||R(G_i(y))|| = 0$. (4) Let $R_j \in R$. Suppose that there is a subset K of $I(|K| \ge 2)$ so that the union graph $\bigcup_{i \in K^i} (y)$ makes the region R $(\bigcup_{i \in K^i} (y))$ as defined in Definition 4. Then we take $|R_j \cap c(G(x))| = m_1$ and $|R_j \cap c(G(y))| = m_2$, where $R_j = R(\bigcup_{i \in K} G_i(y))$. If $m_1 = 0$, then we define $||R_j||$ as $||R_j|| = |R_j| - m_2$. If $m_1 \ne 0$. Then there exists a graph $G_i(x)$ such that $c(G_i(x)) \subset R_j$. We now follow (2) and (3) for R_j . We define c_y by $c_y = \sum_{i \in J} ||R_i|| + \sum_{g(i) \in G(x \times B)} g(i)$, as the final score of $P_y(x \ne y)$. If $c_x > c_y$, then we say that P_x with x-stones win the game by $(c_x - c_y)$.

DEFINITION 8. A two person go-game is a set $\{f, g, S, B\}$ of a move function which obey the Ko-rule, a capture function g, a set $S = \{b, w\}$ and a two dimensional board B. 3. Life and Seki

We introduce the terms of Safe and Seki. Let $\{f, g, S, B\}$ be a two-person go-game on B with the final graph $G_n = G(b) \cup G(w)$. Let $G(x) \in \{G(b), G(w)\}$. Suppose that there exist a simple closed x-graph $G_1(x)$ in G(x) and a y-graph $G_1(y)$ in G(y) $(x \neq y)$ such that $G_1(y) \subset G_1(x)$. Let f(n) = (n, x, v). (1) If a finite number 2k of moves f(i) defined by f(n+2+j)=a pass move if $j=1, 3, \dots, 2k-1$, a non-pass (y) move if $j=2, 4, \dots, 2k$,

with $g(n+2+j)=\phi$ (j<2k), it is not possible to have $g(n+2+2k)=G_1(y)$. Then we say that $G_1(y)$ is Safe.

(2) If a non-pass move by any player $P_x(\text{or } P_y)$ into a set $R(G_1(x) \setminus c(G_1(y)))$ is unfavorable for that player, then we say that $G_1(x)$ and $G_1(y)$ form a Seki [27, p.10]. (*n* can be replaced by k < n).

4. Examples

We have following examples of go-games. EXAMPLE 2. Let $\overline{B}=B \setminus \{(1,1), (1,2), (2,1)\}$. Let $\{f,g,S,B\}$ be a two-person go-game on B defined by f and g: $(i,b,a_i)(a_i \in \overline{B})$ if i=2n+1 $(n=0,1, \dots, (n_1n_2-4))$, f(i)= a pass move if i=2n $(n=1,2, \dots (n_1n_2-4))$, $(i=2(n_1n_2-3), w, (1,2))$, a pass move if $i=2(n_1n_2-3)+1$,

 $(i=2(n_1n_2-3)+2, w, (2, 1)),$ a pass move if $i=2(n_1n_2-3)+3, 2(n_1n_2-3)+4$, and $g(i)=b\times\overline{B}$ if $i=2(n_1n_2-3)+2,$ ϕ if $i\neq 2(n_1n_2-3)+2.$ We can see that $|g(2(n_1n_2-3)+2)| = |\overline{B}| = n_1n_2-3$. Let G_n be the final graph of this game. Then $G_n = \{(w, (1, 2)), (w, (2, 1))\}$. It is not difficult to see that:

 $n \leq 2(n_1n_2-2)$. If this game takes place on \overline{B} , then the total number n' of moves of the second game is less than or equal to $2(n_1n_2-4)$. If the game repeatedly takes the place, then the (grand) total number $n+n'+\cdots$ of moves. from the first game to the last game is less than or equal to

$$2(n_1n_2-2) + \sum_{i=4}^{n_1n_2} 2(n_1n_2-i).$$

EXAMPLE 3. Let $\{f, g, S, B\}$ be a go-game. Suppose that n moves f(i) with $g(i)=\phi$ $(i=1,2,\dots,n)$ formed the graph $G_n=G(b)\cup G(w)$ consisting of Kos. If P_b and P_w take moves f(n+i) $(i=1,2,\dots,k)$ with $|g(n+i)| \leq 1$ and this game ends with the final graph G_{n+k} (after two consecutive pass moves $f(n+k+1)=\phi$ and $f(n+k+2)=\phi$), then it is not difficult to show that $n+k\leq 3(n_1n_2)-4$.

EXAMPLE 4. Let $\{f, g, S, B\}$ be a 2-person go-game on B such that $g(i) = \phi$ for all *i*. Then the total number *n* of moves is less than or equal to $2n_1n_2$, where *n* is defined by the final graph G_n of the game.

PROBLEM. (1) Find the total number of stones with which every go-gamecan be played without exchanging black and white stones during the play time. (2) Find an upper bound of n, where n is defined by G_n , the final graph of the go-game.

5. Three person go-game on a 2-dimensional board

Let $S = \{b_1, b_2, b_3\}$ be a set of three distinct objects b_i . Let y be a member of S. Any subset of $y \times B$ is called a y-graph. Let $G(b_i)$ be a graph. $G = \bigcup_{i=1}^{3} G(b_i)$ is called a graph if $c(G(b_1)) \cap c(G(b_2)) \cap c(G(b_3)) = \phi$. Let G(y) be a simple closed graph and let $G(x) \cup G(y) \cup G(z)$ be a graph $(x, y, z \in S)$. If $c(G(x)) \cup c(G(z)) = R(G(y))$, then we say that $G(x) \cup G(z)$ is completely surrounded by G(y) and we denote it by $G(y)(G(x) \cup G(z))$.

DEFINITION 9. Ko. Let $Ko(G_1(y), G_1(x), (i_1, j_1), (y, a_1)), Ko(G_2(x), G_2(x), G_2(x), G_2(x))$

132 J*i*

Jin Bai Kim

 $(i_2, j_2), (x, a_2)$ and Ko $(G_3(z), G_3(y), (i_3, j_3), (z, a_3))$ be three Kos. Then we say that these three Kos form a Ko in a three person go-game on a 2-dimensional board B. We can define a move function f and a capture function g as defined before. We also can define Ko-rule and SCORING as defined in 2. We define a three-person go-game on a two-dimensional board B as a set $\{f, g, \{b_1, b_2, b_3\}, B\}$ of a move function f, a capture function g, $S = \{b_1, b_2, b_3\}$ and a two-dimensional

board B. There are problems of Life and Seki. We give an example of a 3-person go-game on a 2-dimensional board B.

EXAMPLE 5. From this example, it shows that Seki is complicated in a :3-person go-game on B.

The following theorem is a partial answer to Problem 1.

THEOREM. Let $\{f, g, \{b_1, b_2, b_3\}, B\}$ be a three person game of go on B with the final graph $G_n = G(b_1) \cup G(b_2) \cup G(b_3)$. Then $|G(b_1)| + |G(b_2)| + |G(b_3)| + \sum_{i=1}^n |g(i)| < (n-2)n_1n_2$.

PROOF. It is clear that $|G(b_1)| + |G(b_2)| + |G(b_3)| < n_1 n_2$. It is also clear that |g(1)| + |g(2)| = 0 and |g(3)| = 0. The theorem follows from $|g(i)| < n_1 n_2$ for all i > 3.

REMARK. The above theorem is true for an *n*-person go-game on a 2dimensional go-board. The number $(n-2)n_1n_2$ is not realistic because of *n* which is not known. We can define an *n*-person go-game on an *m*-dimensional board. In a 3-person go-game $\{f, g, \{b, w, y\}, B\}$, there will be two cases for f(2): Let $f(1)=(1, G_1)$ and $g(1)=\phi$, where G_1 is a subset of $b\times B$. Case (1). f(2)=(2, w, v)=(2, (w, y)) with $g(2)=\phi$, where $v \in B \setminus c(G_1)$. Case (2). f(2)=(2, w, V)=(2, G(w))with $g(2)=\phi$, where $G(w)=w\times V$ and $V \subset B \setminus c(G_1)$.

The author presented this paper to the Fourth Annual Mathematics and Statistics Conference, Recreational Mathematics, Miami University, Oxford, Ohio, September 24, 1976.

> West Virginia University Morgantown, W. Va. 26505 U.S.A.

-133

REFERENCES.

[1] David B. Benson, Life in the game of go, Computer Science Department, Washington State University, Pullman, WA. (1974?)1-21.

[2] David B. Benson, Life in the game of go, Information Sciences 10(1976), 17-29.

- [3] N.D. Carlson, A beginner's guide to go, 4435 Mayfield Road, South Euclid, Ohio 44121, 1966.
- [4] S. Dowsey, Go and the computer, Go Review, 13-3 (Mar. 1973), 72-74.
- [5] E. Falkener, Games ancient and oriental and how to play them, Dover, New York, 1961.
- [6] I.J. Good, The mystery of Go, New Scientist, No. 427, Jan. 1965, 172-174.
- [7] Haruyama and Nagahara, Basic techniques of go, Ishi Press, Tokyo, 1969.
- [8] I. Ishigure, In the beginning: The opening in the game of go, Ishi Press, Tokyo, 1973.
- [9] K. Iwamoto, Go for beginners, Ishi Press, Tokyo, 1972.
- [10] K. Iwamoto, The 1971 Honinbo tournament, Ishi Press, Tokyo, 1973.
- [11] Y. Kawabata, The master of Go, Alfred A. Knopt, New York, 1972.
- [12] S. Kshikawa, Stepping stones to go, Tuttle, Rutland, Vermont.
- [13] O. Orschelt, The theory and practice of go, translated and edited by S.P. King and G.G. Leckie, Tuttle, Rutland, Vermont, 1966.
- [14] E. Lasker, Go and go-moku, The oriental board games, Dover, New York, 1960. [15] L. and E. Morries, The game of go, American Go Association, 1951.
- [16] Y. Nagahara, Strategic concepts of go, Ishi Press, Tokyo, 1972.
- [17] E. Sakata, The middle game of go, Ishi Press, Tokyo, 1971.
- [18] K. Segoe, Go proverbs illustrated, The Nihon Ki-in, Jokyo, 1960.
- [19] J.M.H. Olmstead and K.D. Robinson, A treatise on the rules of go, Go monthly Rev.
 4, No. 9(Tokyo, Japan), 1964.
- [20] H. Renus, Simulation of a learning machine for playing go, Information precessing 1962(Proc. IFIP Congress, Munich, 1962), North Holland, Amsterdam, (1963), 192-194.
- [21] G. Rosenthal, 13 *line go*, Published by the author, 4009 Liberty Heights Avenue, Baltimore, Maryland, 1954.
- [22] A. Smith, The game of go, Tuttle, Rutland, Vermont, 1956.
- [23] K. Takagawa, How to play go, American Go Association, 1958.
- [24] K. Takagawa, The vital points of go, American Go Association, 1958.
- [25] E. Thorp and W. Walden, A partial analysis of go, Computer J. 7, No.3 (1964),

203-207.

- [26] E. Thorp, Optimal gambling systems for favorable games, Rev. Internat. Statist. Inst. 37, No.3(1969), 273–293.
- [27] E. Thorp and W. Walden, A computer assisted study of go on $M \times N$ boards, Information Sciences 4, No. 1 (1972), 1-33.
- [28] J. Tilley, Go: International handbook and dictionary, Ishi Press, Tokyo, (1968?). [29] A. Zobrist, A model of visual organization for the game of go, S.J.C.C. 1970.

.

· · ·

•

• • • <u>-</u>

- .

· -

.

:	-	1.41		

		, -
·	_ •	- · _
	,	

-

and a state of the state of the

.