Kyungpook Math. J, Volume 18, Number 1 June, 1978

· · · · · · · · · ·

PRIMARY IDEALS IN THE RING OF COTINUOUS FUNCTIONS

-

By Soon Sook Bae

0. Abstract

Considering the prime z-filters on a topological space X through the structures of the ring C(X) of continuous functions, a prime z-filter is uniquely determined by a primary z-ideal in the ring C(X), i.e., they have a one-to-one correspondence. Any primary ideal is contained in a unique maximal ideal in C(X). Denoting $\mathscr{F}(X)$, $\mathscr{O}(X)$, $\mathfrak{M}(X)$ the prime, primary-z, maximal spectra, respectively, $\mathscr{O}(X)$ is neither an open nor a closed subspace of $\mathscr{F}(X)$.

1. Preliminaries

If X is a topological space, the set C(X) of real continuous functions is a ring. For any z-ideal I in C(X), the following are equivalent: (1) I is prime, (2) I contains a prime ideal, (3) For all $f, g \in C(X)$, if fg=0, then $f \in I$ or $g \in I$ (4) For every $f \in C(X)$, there is a zero-set in Z[I] on which f does not change sign, Let $\mathscr{P}(X)$ ($\mathfrak{M}(X)$) be the set of all prime (maximal) ideals in C(X), let U(E) be the set of all prime (maximal) ideals containing the set E,

then (i) if a is the ideal generated by E, U(E)=U(a)=U(r(a)) (ii) $U(0)=\mathscr{F}(X)$ ($\mathfrak{M}(X)$), $U(1)=\phi$ (iii) if $(E_i)_{i\in I}$ is any family of subsets of C(X), then $U(\bigcup_{i\in I} E_i)=\bigcap_{i\in I} U(E_i)$, (iv) $U(a\cap b)=U(a)\cup U(b)=U(ab)$ for any ideals a, b of C(X). Hence the sets U(E) satisfy the axoms for closed sets in a topological space. The resulting space is said to be the prime (maximal or structure space) spectrum of C(X), respectively.

3. Results

THEOREM 1. For any z-ideal I in C(X), the following are equivalent: (1) I is primary (2) I contains a primary ideal (3) For all $f,g \in C(X)$, if fg=0, then either $f \in I$ or $g^n \in I$ for some n>0(4) For every $f \in C(X)$, there is a zero-set in Z[I] on which f does not change sign.

106 Soon Sook Bae

LEMMA 2. If J and J' are primary ideals, neither containing the others, then $J \cap J'$ is not primary

THEOREM 3. In C(X), every primary ideal is contained in a unique maximal ideal.

PROOF. We know that each ideal is contained in at least one maximal ideal. If M and M' are distinct maximal ideals, then $M \cap M'$ is not primary Since M and M' are z-ideals, $M \cap M'$ is also a z-ideal. By Theorem 1, $M \cap M'$ contains no primary ideal.

This is a speciality of characterizations of ideals in C(X), the next theorem shows that a primary ideal uniquely determines a prime z-filter on a topological space X. Therefore we see the correspondence between primary z-ideals and prime z-filters be one-to-one.

THEOREM 4. If a is primary ideal in C(X), Z[a] is a prime z-filter

PROOF. Let $a' = Z \ Z[a]$, then Z[a'] = Z[a] and a' is a z-ideal which contains the primary ideal a. By theorem 1, a' is primary z-ideal and hence a' is prime. Thus Z[a'] = Z[a] is a prime z-filter.

LEMMA 5. For all ideal I, we have Z[I] = Z[r(I)]

THEOREM 6. Let $\mathcal{Q}(X)$ be the set of all primary z-ideals in C(X) and let V(E) be the set of all primary z-ideals which contain E, where E is a subset of

C(X). Then (i) if a is the ideal generated by E, then V(a)=V(r(a))=V(E), (ii) $V(0)=\mathscr{O}(X)$, $V(1)=\phi$ (iii) if $(E_i)_{i\in I}$ is any family of subsets of C(X), then $V(\bigcup_{i\in I}E_i)=\bigcap_{i\in I}V(E_i)$ (iv) $V(a\cap b)=V(ab)=V(a)\cup V(b)$

Theorem 6 shows that the sets V(E) satisfy the axioms for closed sets in a topological space. We shall say this topological space the primary z-spectrum of C(X).

LEMMA 7. Let X_f denote the complement of V((f)), (f) the ideal generated by f, then the sets X_f form a basis of open sets for the topology and (i) $X_f \cap X_g$ $= X_{fg}(\text{ii}) X_f = \phi$ if f is nilpotent (iii) $X_f = \mathcal{Q}(X)$ if, and only if f is unit (iv) $\mathcal{Q}(X)$ is quasi-compact (v) More generally X_f is quasi-compact (vi) An open subset of $\mathcal{Q}(X)$ is quasi-compact if, and only if it is a finite union of sets X_f

Furthermore, $\mathscr{Q}(X)$ is a subspace of prime spectrum $\mathscr{P}(X)$ of $\mathcal{C}(X)$ and has

.

Primary Ideals in the Ring of Continuous Functions 107

-

a maximal spectrum $\mathfrak{M}(X)$ as a subspace. And the sets $V_f = \{a \in \mathscr{O}(X) | f \in a\}$ form the basis for the closed sets. For a subset \mathscr{A} of $\mathscr{O}(X)$ $Cl_{Q(X)}$ $\mathscr{A} = \{a \in \mathscr{O}(X) | a \supset \cap \mathscr{A}\}$ this immediately implies that $\mathscr{O}(X)$ is not T_1 in general and $\mathscr{O}(X)$ is neither an open nor a closed subspace of $\mathscr{P}(X)$. But if X is discrete then $\mathscr{O}(X) = \mathscr{P}(X)$. For the fact that every ideal is a z-ideal, since letting Z (f) = Z(g) for some $g \in I$

Define
$$h(x) = \begin{cases} \frac{f(x)}{g(x)} & \text{if } x \in Z(g) \\ 0 & \text{otherwise} & \text{then } h \in C(X) \text{ and } f = gh \text{ and hence } f \in I \end{cases}$$

What ever space X does $\mathcal{Q}(X)$ a closed (or an open) subspace of $\mathcal{P}(X)$ make?

Kyung-Nam Industrial Junior College

REFERENCES

- [1] Leonard Gillman & Meyer Jerison, Ring of Continuous Functions, D. Van Nostrand Comp. Inc. (1960)
- [2] Carl W. Kohls, Prime Ideals in Rings of Continuous Functions Illinois J. Math.
 2 (1958) pp. 505-536
- [3] _____, Prime Ideals in Rings of Continuous Functions II Duke Math. J. (1958) pp. 447-458
- [4] M.F. Atiyah, Frs & I.G. Macdonald, Introduction to commutative Algebra, Addison-Wesley Publishing Comp. (1969)