Kyungpook Math. J. Volune 18, Number 1 June, 1978.

A NOTE ON PERIPHERALLY M-PARACOMPACT SPACES

By M.K. Singal and Shashi Prabha Arya

In [1] E.E. Grace introduced the concept of peripherally paracompact spaces. In the present paper we introduce and study peripherally \mathfrak{M} -paracompact spaces. Also, by making use of some other concepts introduced by E.E. Grace [1], we obtain some characterisations of \mathfrak{M} -paracompact spaces. A result due to D.R. Traylor [4] for paracompactness in regular spaces, has also been extended to \mathfrak{M} -paracompactness in normal spaces.

DEFINITION 1. A family \mathscr{A} of open subsets of a space X is said to have property \mathscr{P} in the strong sense (resp. in the weak sense) if \mathscr{A} has the property \mathscr{P} as a collection of open sets in X (resp. in the subspace $\bigcup \{A : A \in \mathscr{A}\}$ of X).

DEFINITION 2. A space X is said to be *peripherally* \mathfrak{M} -paracompact in the strong sense (resp. in the weak sense) if for each frontier set (that is, each nowhere dense, closed set) F in X and each open covering \mathscr{U} of X of cardinality $\leq \mathfrak{M}$, there is an open refinement \mathscr{V} of \mathscr{U} , covering F, which is locally finite in the strong sense (resp. in the weak sense)

in the strong sense (resp. in the weak sense).

THEOREM 1. A space X is \mathfrak{M} -paracompact if and only if it is peripherally \mathfrak{M} -paracompact in the strong sense.

PROOF. Only the if part need be proved. Let \mathscr{C} be any open covering of X of cardinality $\leq \mathfrak{M}$. Let \mathscr{H} be a family of mutually disjoint open sets refining \mathscr{C} such that $H^* = \bigcup \{H: H \in \mathscr{H}\}$ is dense in X. Then, $X \sim H^*$ is a nowhere, closed set. Let \mathscr{C} be a locally finite, open refinement of \mathscr{C} covering the frontier set $X \sim H^*$ and let \mathscr{A} be a locally finite, open refinement of \mathscr{C} covering the frontier set $X \sim H^*$ and let \mathscr{A} be a locally finite, open refinement of \mathscr{C} covering the boundary of $E^* = \bigcup \{E: E \in \mathscr{C}\}$. Consider now, the family $\mathscr{H}' = \{H \cap (X \sim \overline{E^*}): H \in \mathscr{H}\}$. It is easy to verify that \mathscr{H}' is a discrete family of open sets and that $\mathscr{H}' \cup \mathscr{C} \cup \mathscr{A}$ is a locally finite open refinement of \mathscr{C} which covers X and hence X is \mathfrak{M} -paracompact.

THEOREM 2. A normal space X is peripherally M-paracompact in the strong sense iff it is peripherally M-paracompact in the weak sense.

 100 M.K. Singal and Shashi Prabha Arya PROOF. Let \mathscr{C} be any open covering of X of cardinality $\leq \mathfrak{M}$ and let F be any frontier subset of X. If X is peripherally \mathfrak{M} -paracompact in the weak sense, then there exists an open refinement \mathscr{H} of \mathscr{C} covering F which is locally finite at each point of $H^*=\cup\{H: H\in\mathscr{H}\}$. Since X is normal, and F and $X\sim H^*$ are disjoint closed sets, therefore exists an open set $W: F\subset W\subset \overline{W}\subset X$ $\sim H^*$. Let $\mathscr{W} = \{H \cap W: H \in \mathscr{H}\}$. Then \mathscr{W} is a locally finite open refinement of

 $\mathscr C$ which covers F and hence X is peripherally \mathfrak{M} -paracompact in the strong sense.

DEFINITION 3. A family \mathscr{F} of continuous functions on a space X into the non-negative real numbers is called a *partition of unity* on X if for each point $x \in X$, $\sum f(x)=1$. \mathscr{F} is said to be *subordinated* to a covering \mathscr{U} of X if for each $f \in \mathscr{F}$, $f(X \sim U) = \{0\}$ for some $U \in \mathscr{U}$.

THEOREM 3. A normal space X is \mathfrak{M} -paracompact iff for every open covering \mathscr{C} of X of cardinality $\leq \mathfrak{M}$ and for every frontier set F, there exists an open refinement \mathscr{H} of \mathscr{C} , covering F and which has a partition of unity subordinated to it in the weak sense.

RROOF. To prove the 'if' part, let \mathscr{C} be any open covering of X of cardinality $\leq \mathfrak{M}$. Let \mathscr{H} be a family of disjoint open sets refining \mathscr{C} such that $H^* = \bigcup \{H: H \in \mathscr{H}\}$ is dense in X. Then $X \sim H^*$ is a frontier set. By hypothesis, there exists an open refinement \mathscr{W} of \mathscr{C} which covers $X \sim H^*$ and which

has a partition of unity Φ subordinated to it in the weak sense. Since X is normal, and $X \sim H^*$ and $X \sim \bigcup \{W: W \in \mathscr{W}\}$ are disjoint closed sets, therefore, there exists a continuous function $g: X \to [0, 1]$ such that $g(X \sim H^*) = \{1\}$ and $g(X \sim \bigcup W) = \{0\}$. For each $f \in \Phi$, let $f'(x) = f(x) \cdot g(x)$ for $x \in \bigcup \{W: W \in \mathscr{W}\}$ and let f'(x) = 0 for $x \in X \sim \bigcup \{W: W \in \mathscr{W}\}$. For each $H \in \mathscr{H}$, there exists a continuous function: $g_H: X \to [0, 1]$ such that $g_H(X \sim H) = \{0\}$ and $g_H(H - g^{-1}(0)) = \{1\}$. Let h be defined as

$$h(x) = \sum_{\substack{f \in \Phi \\ f \in \varphi}} f'(x), \text{ if } x \in X \sim H^*$$
$$\sum_{\substack{f \in \Phi \\ f \in \varphi}} f'(x) + g_H(x), \text{ if } x \in H^*.$$

Then \mathscr{C} has the partition of unity $\Phi = \{f'/h: f \in \Phi\} \cup \{g_H/h: H \in \mathscr{H}\}$ subordinated to it. Thus, every open covering of X of cardinality $\leq \mathfrak{M}$ has a partition of unity subordinated to it and hence X is \mathfrak{M} -paracompact [2, theorem 2]. Converse is obviously true, [2, theorem 2].

A Note on Peripherally M-Paracompact Spaces 101

THEOREM 4. For a normal space X, the following are equivalent: (a) X is \mathfrak{M} -paracompact.

(b) For every covering \mathcal{U} of X of cardinality $\leq \mathfrak{M}$ and for each frontier set F in X, there is an open refinement \mathcal{V} of \mathcal{U} , covering F, such that \mathcal{V} is cushioned in \mathcal{U} in the strong sense.

(c) For every open covering \mathcal{U} of X of cardinality $\leq \mathfrak{M}$ and for each frontier set F in X, there is an open refinement \mathcal{V} of \mathcal{U} covering F, such that \mathcal{V} is cushioned in \mathcal{U} in the weak sense.

(d) For every open covering \mathcal{U} of X of cardinality $\leq \mathfrak{M}$ and for each frontier set F in X, there is an open refinment \mathcal{V} of \mathcal{U} covering F, such that \mathcal{V} is σ -cushioned in \mathcal{U} in the weak sense.

(e) For each every open covering \mathcal{U} of X of cardinality $\leq \mathfrak{M}$ and for each frontier set F in X, there is an open refinement \mathcal{V} of \mathcal{U} covering F, such that \mathcal{V} is σ -cushioned in \mathcal{U} in the strong sense.

PROOF. (a) \Longrightarrow (b). Every open covering \mathscr{U} of X of cardinality $\leq \mathfrak{M}$ will have an open, cushioned refinement in view of Theorem 1 and hence (b) is true.

(b) \Longrightarrow (c) Obvious

 $(c) \Longrightarrow (d)$ Obvious

 $(d) \Longrightarrow (e)$. Since X is normal, a proof similar to theorem 2 applies.

 $(e) \Longrightarrow (a)$. This follows in a manner similar to the proof of theorem 1

DEFINITION 4. A space X is said to be \mathfrak{M} -paracompact in a discrete peripheral sense if for every open covering \mathscr{U} of X of cardinality $\leq \mathfrak{M}$ there exists an open refinement \mathscr{V} of \mathscr{U} such that if \mathscr{F} be any discrete family of closed set refining \mathscr{V} , then the boundary of $\bigcup \{F: F \in \mathscr{F}\}$ is \mathfrak{M} -paracompact with respect to the space X.

DEFINITION 5. A space X is said to be subparacompact if for every open covering \mathscr{C} of X, there exists a sequence $\{\mathscr{F}_i: i=1, \dots\}$ of discrete families of closed sets such that $\bigcup_{i=1}^{\infty} \mathscr{F}_i$ is a refinement of \mathscr{C} .

THEOREM 4. If X is a normal, subparacompact space which is countably paracompact in a discrete peripheral sense, then X is countably paracompact.

PROOF. Essentially the same as that of ([4], theorem 5) Traylor states the theorem with 'semi-method 'instead of 'subparacompact'. However, while

102 M.K. Singal and Shashi Prabha Arya

proving the theorem, only subparacompactness is being used. It should be noted that every normal, semi-metric space is perfectly normal and a perfectly normal space is always countably paracompact. So the theorem becomes obvious with subparacompact replaced by semi-metric.

THEOREM 5. If X is a normal, subparacompact space which is \mathfrak{M} -paracompact in a discrete peripheral sense, then X is \mathfrak{M} -paracompact.

PROOF. Since X is \mathfrak{M} -paracompact in a discrete peripheral sense, therefore, X is countably paracompact in a discrete peripheral sense. Then X is countably paracompact by theorem 4. Now, let $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ be any open covering of X of cardinality $\leq \mathfrak{M}$ Let Λ be well ordered by \leq . Let \mathcal{U}' be an open refinement of \mathcal{U} covering X such that the boundary of the union of each discrete family of closd sets refining \mathcal{U} is M-paracompact with respect to X. Since X is subparacompact, there exists a sequence $\{\mathscr{F}_i: i \in N\}$ of discrete families of closed sets. For each $\alpha \in \Lambda$, let $\mathscr{F}_{1\alpha}$ denote the subfamily of \mathscr{F}_1 consisting of all sets $G \in \mathscr{F}_1$ for which α is the first index such that $G \subset U_{\alpha}$. If $G \in \mathscr{F}_1$ $\mathcal{F}_{1\alpha}$ for some α , denote by V_G an open set which contains boundary of G^{ε} such that $V_G \supset U_\alpha$ and V_G does not intersect $[(\bigcup \{F: F \in \mathscr{F}_1\}) \sim G]$. Denote by $\mathscr{V}_{1\alpha}$ the family consisting of all sets V such that there exists $G \in \mathscr{F}_{1\alpha}$ such that $V = V_G$. Since boundary of $\bigcup \{F: F \in \mathcal{F}_1\}$ is \mathfrak{M} -paracompact and $\mathscr{V}_1 = \bigcup_{i \neq j} \mathscr{V}_{i \neq j}$ is a covering of the boundary of $\bigcup \{F: F \in \mathscr{F}_1\}$; therefore, there exists a locally finite open refinement \mathscr{V}_1' of \mathscr{V}_1 such that \mathscr{V}_1' covers boundary of $\bigcup \{F: F \in \mathscr{F}_1\}$. Now, denote by \mathscr{V}_1'' the family consisting of all sets V for which there is a $G \in \mathscr{F}$ such that $x \in V$ iff either $x \in G$ or x is a point of a member of \mathscr{V}_1' which intersects G. Clearly, \mathscr{V}_1'' is an open refinement of \mathscr{U}' which covers $\bigcup \{F: F \in \mathscr{F}_1\}$. Now consider \mathscr{F}_2 . Denote by \mathscr{F}_2 the family consisting of all sets G such that there exists $H \in \mathscr{F}_2$ such that $G = H \sim$ $[H \cap (\bigcup \{V: V \in \mathscr{V}_1'')]$. Clearly, \mathscr{F}_2' is discrete family of closed sets refining \mathscr{U}' . For each $\alpha \in \Lambda$, denote by $\mathscr{F}_{2\alpha}$ the subfamily of \mathscr{F}_{2}' consisting of only those sets each of which is a subset of U_{α} but none is a subset of U_{β} for $\beta <$ α . If $G \in \mathscr{F}_{2\alpha}$, denote by V_G an open set containing the boundary of G such that $H_{\alpha} \subset V_G$, V_G does not intersect $[\bigcup \{F: F \in \mathscr{F}_2\} \sim G]$. Let $\mathscr{V}_{2\alpha}$ denote the family consisting of all sets V for which there is a $G \in \mathscr{F}_{2\alpha}$ such that $V = V_{G}$. Let $\mathscr{V}_2 = \bigcup_{\alpha \in \Lambda} \mathscr{V}_{2\alpha}$. As before, there exists a locally finite, open refinement \mathscr{V}_2

A Note on Peripherally M-Paracompact Spaces 103

of \mathscr{V}_2 which covers the boundary of $\bigcup \{F: F \in \mathscr{F}_2\}$ and thus there is a locally finite open refinement \mathscr{V}_2'' of \mathscr{U}' such that \mathscr{V}_2'' covers $\bigcup \{F: F \in \mathscr{F}_2'\}$. This process may be continued indefinitely as follows: for each positive integer n > 2, denote by \mathcal{F}_n' the collection which consists of all sets G for which there is a $H \in \mathscr{F}_{i}$ such that $G = H \sim (H \cap [\bigcup \{V: V \in \mathscr{V}_{i}'', i=1, \dots, n-1\}])$. Clearly, \mathscr{F}'_n is a discrete family of closed sets such that \mathscr{F}'_n refines \mathscr{U}' . As before, denote by $\mathcal{F}_{2\alpha}$ the subfamily of \mathcal{F}_n' consisting of just those sets each of which is a subset of U_{α} , but none is a subset of U_{β} for $\beta < \alpha$. For $G \subseteq C$ \mathscr{F}_n^{α} , let V_G denote an open set containing the boundary of G such that $V_G \supset \mathcal{F}_n^{\alpha}$ U_{α} , V_{α} does not intersect ($\bigcup \{F: F \in \mathcal{F}_i, i=1, \dots, n-1\}$ and also does not intersect $(\bigcup \{F: F \in \mathscr{F}_i\}) \sim G$. If \mathscr{V}_{nk} denotes the family consisting of those sets. $G \in \mathscr{F}_{n\alpha}$ such that $V = V_G$ and if $\mathscr{V}_n = \bigcup_{\alpha \in \mathcal{A}} \mathscr{V}_{n\alpha}$, then there exists a locally finite, open refinement \mathscr{V}'_n of \mathscr{V}'_n such that \mathscr{V}'_n covers the boundary of \bigcup $\{F: F \in \mathscr{F}_n'\}$ and thus there is a locally finite open refinement \mathscr{V}_n'' of \mathscr{U}' such that \mathscr{V}_n'' covers $\bigcup \{F: F \in \mathscr{F}_n'\}$. Now, $\bigcup_{n=1}^{\infty} \mathscr{V}_n''$ is a σ -locally finite, open refinement of \mathscr{U}' and hence of \mathscr{U} . Thus every open covering of X of cardinality $\leq \mathfrak{M}$ has a σ -locally finite open refinement. Also, X is a countably paracompact. Therefore X is \mathfrak{M} -paracompact ([3], theorem 5).

COROLLARY Every normal space which is either semi-metric or developable or

Moore, and is M-paracompact in a discrete peripheral sense, is M-paracompact.

PROOF. Every semi-metric, or developable, or Moore space is subparacompact. and hence the result follows from theorem 5.

> Institute of Advanced Studies, Meerut University, Meerut and Maitreyi College, University of Delhi India

104 M.K. Singal and Shashi Prabha Arya

REFERENCES

[1] F.F. Cross Devictored concerning properties imply concerning properties Const. I

[1] E.E. Grace, Peripheral covering properties imply covering properties. Canad. J. Math. 20, (1968)257-263.

[2] T. Ishii, Some characterisations of M-paracompact spaces I. Proc. Japan Acad. 38

(1962) 480-483.

• • • • • •

•

- [3] J. Mack, Directed covers and paracompact spaces. Canad J. Math. 19, (1957) 649-654.
- [4] D.R. Traylor, Weak peripheral properties imply covering properties. J. London Math. Soc. 44, (1969) 509-514.

.

.