Kyungpook Math. J. Volume 18, Number 1 June, 1978.

SPACES IN WHICH THE CLOSURE OF A COMPACT SET IS COMPACT

By Norman Levine

1. Introduction

Well known conditions for a space to have the property that compact subsets have compact closures are: compactness, regularity, Hausdorff (theorem 2.2). Spaces with this property are called C-spaces. Example 7.1 shows that T_1 is not a sufficient condition for a space to be a C-space.

In theorem 2.5, we relax the compactness of X and show that X is a C-space if the derived set of X is compact. We introduce the concept of weakly Hausdorff and show that it is a sufficient condition for a space to have property C(theorem 2.7). Normal and metacompactness together imply property C (theorem 2.8).

Closed subspaces of C-spaces are shown to be C-spaces (theorem 3.1) and disjoint sums of C-spaces are shown to be C-spaces (corollary 3.4). A sufficient condition is given for the intersection of two C-sets to be a C-set (theorem 3.5). Example 7.7 shows that in general, the intersection of two C-sets need not be a C-set. A product space is shown to be a C-space if and only if each factor space is a C-space (theorem 4.1).

In theorem 5.2, a necessary and sufficient condition is given for a simple extension of a topology to be a C-topology.

If $f: (X, \mathscr{T}) \to (Y, \mathscr{U})$ is a surjection and \mathscr{T} is the weak topology, then \mathscr{T} is a C-topology if and only if \mathscr{U} is a C-topology (theorem 6.1).

In §7, examples are given relative to infima and suprema of C-topologies and intersections of C-subsets of a space.

2. Sufficient conditions

DEFINITION 2.1. A space (X, \mathscr{F}) will be called a *C*-space and \mathscr{F} will be called a *C*-topology iff for each compact set $K \subset X$, then c(K) is compact, c denoting the closure operator. A subset $A \subset X$ is called a *C*-set iff $(A, A \cap \mathscr{F})$ is a *C*-space.

We list the well known results of such spaces in

THEOREM 2.2. (X, \mathcal{T}) is a C-space if any one of the following hold:

5

.

•

Norman Levine

94

(i) (X, \mathcal{T}) is compact (ii) (X, \mathcal{T}) is regular (iii) (X, \mathcal{T}) is Hausdorff.

We shall weaken conditions (i) and (iii) to get theorems 2.5 and 2.7. But first we prove two lemmas.

LEMMA 2.3. A space (X, \mathcal{T}) is a C-space iff $F \subset c(K) - K$ implies that F is compact when F is closed and K is compact.

PROOF. Let (X, \mathscr{T}) be a C-space and $F \subset c(K) - K$. Then $F \subset c(K)$ and c(K) is compact. Thus F is compact, being a closed subset of c(K).

Conversely, let $K \subseteq X$, K compact. Suppose $c(K) \subseteq \bigcup \{O_{\alpha} : \alpha \in A\}$, $O_{\alpha} \in \mathscr{F}$. Since K is compact, there exist α_i such that $K \subseteq O_{\alpha_1} \bigcup \cdots \bigcup O_{\alpha_n}$. Let $F = c(K) - (O_{\alpha_1} \bigcup \cdots \bigcup O_{\alpha_n})$. Then $F \subseteq c(K) - K$ and hence F is compact. There exists then β_1 , \cdots , β_m in Δ such that $F \subseteq O_{\beta_1} \bigcup \cdots \bigcup O_{\beta_n}$. It follows then that $c(K) \subseteq O_{\alpha_1} \bigcup \cdots \bigcup O_{\alpha_n} \cup O_{\beta_n} \cup O_{\beta_n} \cup \cdots \cup O_{\beta_n}$.

LEMMA 2.4. If (X, \mathcal{T}) is compact, then X' is compact, X' denoting the derived set of X.

PROOF. Let $x \notin X'$; then $\{x\} \in \mathscr{T}$ and X' is closed.

THEOREM 2.5. Let (X, \mathcal{F}) be a space and suppose that X' is compact. Then (X, \mathcal{F}) is a C-space.

PROOF. We employ lemma 2.3: let $F \subseteq c(K) - K$, F being closed and K be-

ing compact. Then $F \subset K' \subset X'$ and $F \subset X'$. It follows then that F is compact.

To obtain a generalization of (iii) in theorem 2.2, we introduce

DEFINITION 2.6. We say that a space (X, \mathcal{T}) is weakly Hausdorff iff c(x) = c(y) whenever there exists a net $S: D \rightarrow X$ for which $\lim S = x$ and $\lim S = y$.

THEOREM 2.7. If (X, \mathcal{T}) is weakly Hausdorff, then (X, \mathcal{T}) is a C-spaces.

PROOF. Let $c(K) \subset \bigcup \{O_{\alpha} : \alpha \in A\}$, K compact and $O_{\alpha} \in \mathscr{F}$. Then $K \subset O_{\alpha_1} \cup \cdots \cup O_{\alpha_n}$ for some $\alpha_i \in A$. Let $x \in c(K)$. There exists then a net $S : D \to K$ such that $\lim S = x$. Since K is compact, there exists a subset $T : E \to K$ and a point $y \in K$ such that $\lim T = y$. Since $\lim T = x$, it follows that c(x) = c(y). Now $y \in O_{\alpha_i}$ for some *i* and hence $x \in O_{\alpha_i}$. Thus $c(K) \subset O_{\alpha_1} \cup \cdots \cup O_{\alpha_n}$ and c(K) is compact.

THEOREM 2.8. Let (X, \mathcal{T}) be normal and metacompact. Then (X, \mathcal{T}) is a C-space.

Spaces in which the Closure of a Compact Set is Compact 95

۲.

PROOF. Let $K \subset X$, K compact and suppose that $c(K) \subset \bigcup \{O_{\alpha} : \alpha \in \Delta\}$. Then $X = \bigcup \{O_{\alpha} : \alpha \in \Delta\} \cup \{\mathscr{C}c(K)\}$. Since (X, \mathscr{F}) is metacompact, there exists an open point-finite refinement $\{O_{\gamma} : \gamma \in \Gamma\}$ of $\{O_{\alpha} : \alpha \in \Delta\} \cup \{\mathscr{C}c(K)\}$. But X is normal and hence there exists an open cover $\{O^*_{\gamma} : \gamma \in \Gamma\}$ of X such that $c(O^*_{\gamma}) \subset O_{\gamma}$ for each $\gamma \in \Gamma$. Now $K \subset O^*_{\gamma_1} \cup \cdots \cup O^*_{\gamma_n}$ and hence $c(K) \subset O_{\gamma_1} \cup \cdots \cup O_{\gamma_n}$. We may assume that $O_{\gamma_1} \not\subset \mathscr{C}c(K)$ for each i. Hence $O_{\gamma_1} \subset O_{\alpha_1}$ for some α_i and c(K) is

compact.

COROLLARY 2.9. If (X, \mathcal{T}) is normal and paracompact, then (X, \mathcal{T}) is a $^{\circ}C$ -space.

3. Subspaces

THEOREM 3.1. Let (Y, \mathcal{U}) be a closed subspace of a C-space (X, \mathcal{T}) . Then (Y, \mathcal{U}) is a C-space.

PROOF. Let $K \subset Y$, K compact; then c(K) is compact and hence $Y \cap c(K)$ is compact, Y being closed. Thus $c_Y(K)$ is compact and (Y, \mathscr{U}) is a C-space.

THEOREM 3.2. Let (X, \mathcal{T}) be a space and $\{F_{\alpha} : \alpha \in \Delta\}$ a locally finite closed cover of X. Then (X, \mathcal{T}) is a C-space iff $(F_{\alpha}, F_{\alpha} \cap \mathcal{T})$ is a C-space for each $\alpha \in \Delta$.

PROOF. The necessity follows from theorem 3.1. To show the sufficiency, thet $K \subset X$, K compact. Since $\{F_{\alpha} : \alpha \in A\}$ is locally finite, and K is compact,

there exists an $O \in \mathscr{T}$ such that $K \subset O$ and $O \cap F_{\alpha_i} \neq \phi$ for $\alpha_1, \dots, \alpha_n$ only. It follows then that $K = \bigcup \{K \cap F_{\alpha_i} : 1 \leq i \leq n\}$ and $c(K) = \bigcup \{c(K \cap F_{\alpha_i}) : 1 \leq i \leq n\} =$ $\bigcup \{F_{\alpha_i} \cap c(K \cap F_{\alpha_i}) : 1 \leq i \leq n\} = \bigcup \{c_{\alpha_i}(K \cap F_{\alpha_i}) : 1 \leq i \leq n\}$. But $K \cap F_{\alpha_i}$ is compact and hence $c_{\alpha_i}(K \cap F_{\alpha_i})$ is compact since F_{α_i} is a C-space. It follows then that c(K) is compact, being a finite union of compact sets.

COROLLARY 3.3. Let (X, \mathcal{F}) be a space and $X = \bigcup \{O_{\alpha} : \alpha \in \Delta\}$ where $O_{\alpha} \in \mathcal{F}$ and $O_{\alpha} \cap O_{\beta} = \phi$ when $\alpha \neq \beta$. Then (X, \mathcal{F}) is a C-space iff $(O_{\alpha}, O_{\alpha} \cap \mathcal{F})$ is a C-space for each $\alpha \in \Delta$.

PROOF. $\{O_{\alpha} : \alpha \in A\}$ is a locally finite family of closed sets.

COROLLARY 3.4 Let (X, \mathcal{T}) be a disjoint union of spaces $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in A\}$. Then (X, \mathcal{T}) is a C-space iff $(X_{\alpha}, \mathcal{T}_{\alpha})$ is a C-space for each $\alpha \in A$.

PROOF. $\{X_{\alpha} : \alpha \in A\}$ is a disjoint open cover of X.

Norman Levine

THEOREM 3.5. Let (X, \mathcal{T}) be a space in which the intersection of two compact sets is compact (see [1]). If A and B are C-subsets of X, then $A \cap B$ is a C-subset. (See exampls 7.7, 7.8.)

PROOF. Let $K \subset A \cap B$, K compact. Then $c_{A \cap B}(K) = A \cap B \cap c(K) = (A \cap c(K))^{-1}$ $\bigcap(B \cap c(K)) = c_A(K) \cap c_B(K)$. Since $c_A(K)$ and $c_B(K)$ are each compact, it: follows that $c_{A \cap B}(K)$ is compact.

4. Product spaces

2

96

THEOREM 4.1. Let $(X, \mathcal{T}) = X \{ (X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Delta \}$. Then (X, \mathcal{T}) is a C-space: iff $(X_{\alpha}, \mathscr{T}_{\alpha})$ is a C-space for each $\alpha \in \Delta$.

PROOF. Suppose $(X_{\alpha}, \mathscr{T}_{\alpha})$ is a C-space for each $\alpha \in \Delta$ and let $K \subset X$, K compact. Now $K \subset P_{\alpha}^{-1} c_{\alpha}(P_{\alpha}K)$ for each $\alpha \in \Delta$ and hence $K \subset X \{c_{\alpha}(P_{\alpha}K) : \alpha \in \Delta\}$. But $c_{\alpha}(P_{\alpha}K)$ is a closed compact set and by the Tychonoff theorem, $\times \{c_{\alpha}(P_{\alpha})\}$ K): $\alpha \in A$ is a closed compact set. It follows then that c(K) is compact. Conversely, suppose that (X, \mathscr{T}) is a C-space and $K_{\beta} \subset X_{\beta}$, K_{β} compact. Take $x_{\alpha} \in X_{\alpha}$ arbitrary for each $\alpha \neq \beta$ and let $K = X \{A_{\alpha} : \alpha \in \beta\}$ where $A_{\alpha} = \{x_{\alpha}\}$ if $\alpha \neq \beta$ and $A_{\beta} = K_{\beta}$. Then $c(K) = \times \{c_{\alpha}(A_{\alpha}) : \alpha \in \beta\}$ and c(K) is compact since K is compact. Again by the Tychonoff theorem, $c_{\beta}(K_{\beta})$ is compact.

5. Simple extension of a topology

DEFINITION 5.1. Let \mathscr{T} be a topology on a set X and let $A \subset X$, $A \notin \mathscr{T}$. Then $\mathcal{T}[A]$ is defined to be $\mathcal{T} \vee \{\phi, A, X\}$ and is called the simple extension: of \mathcal{T} by A (see [2]).

THEOREM 5.2. Let (X, \mathcal{T}) be a space and suppose that $F \notin \mathcal{T}$, F closed. Then: $\mathcal{T}[F]$ is a C-topology iff $F \cap \mathcal{T}$ and $\mathscr{C}F \cap \mathcal{T}$ are C-topologies.

PROOF. In [2], it is proved that $F \cap \mathscr{T} = F \cap \mathscr{T} [F]$ and $\mathscr{C}F \cap \mathscr{T} = \mathscr{C}F \cap \mathscr{T}$ [F]. Furthermore, F and $\mathscr{C}F$ are each open relative to $\mathscr{T}[F]$ and hence by corollary 3.3, $(X, \mathcal{T}[F])$ is a C-space iff $(F, F \cap \mathcal{T}[F])$ and $(\mathscr{C}F, \mathscr{C}F \cap \mathcal{T})$ [F]) are C-spaces. The theorem then follows.

6. Transfer topologies

THEOREM 6.1. Let $f:(X, \mathcal{T}) \rightarrow (Y, \mathcal{U})$ be a surjection with \mathcal{T} the weak topology. Then *T* is a C-topology iff *U* is a C-topology.

Spaces in which the Closure of a Compact Set is Compact 97

PROOF. Let \mathcal{U} be a C-topology and suppose that $K \subset X$, K compact. Then f[K] is compact and hence c(f[K]) is compact in Y. But $c(K) \subset f^{-1} c(f[K])$. and $f^{-1}c(f[K])$ is compact. It follows then that c(K) is compact.

Conversely, let $K \subset Y$, K compact. Then $f^{-1}K$ is compact and hence $c(f^{-1}K)$; is compact. Then since f is a closed transformation, $fc(f^{-1}K) \supset c(K)$ and hence c(K) is compact.

Property C is not invariant under continuous open surjections (see example: 7.2).

7. Examples

EXAMPLE 7.1. T_1 does not imply property C. Let $X = \{1, 2, \dots, n, \dots\}$ and $K = \{1, 3, 5, \dots\}$. Let $\mathcal{T} = \{O : O = \phi \text{ or } K \cap \mathscr{C}O \text{ is finite}\}$. It is easy to see that: \mathscr{T} is a T_1 topology for X, K is compact, c(K) = X and X is not compact.

EXAMPLE 7.2. A continuous, open image of a C-space need not be a C-space. In particular, quotient spaces of C-spaces need not be C-spaces. Let (Y, \mathcal{U}) be: an arbitrary space which is not a C-space. There exists a Hausdorff space (X, \mathscr{T}) and a continuous open surjection $f:(X, \mathscr{T}) \rightarrow (Y, \mathscr{U})$ (see [3], page 92). By (iii) of theorem 2.2, (X, \mathcal{T}) is a C-space.

EXAMPLE 7.3. The intersection of two C-topologies need not be a C-topology. Let $X = \{1, 2, 3, \dots, n, \dots\}, \mathcal{B}_1 = \{\{1\}, \{1, 2\}, \{3\}, \{3, 4\}, \dots, \{2n+1\}, \{$ 2n+2,...}, $\mathscr{B}_2 = \{\{1\}, \{2, 3\}, \{4, 5\}, ..., \{2n, 2n+1\}, ...\}, \mathscr{T}_1$ generated by $\mathscr{B}_{1'}$ as base and \mathscr{T}_2 generated by \mathscr{B}_2 as base. Then \mathscr{T}_1 and \mathscr{T}_2 are each C-topologies since compact sets are finite in each topology and the closures of compact sets are finite. But $\mathcal{T}_1 \cap \mathcal{T}_2 = \{\{1\}, \{1, 2, 3\}, \{1, 2, 3, 4, 5\}, \dots\}$ which: is not a C-topology since $\{1\}$ is compact, but $c\{1\} = X$ which is not compact. EXAMPLE. 7.4. An intersection of a chain of C-topologies need not be a C-topology. Let $X = \{1, 2, \dots, n, \dots\}, \mathcal{T}_1$ be generated by $\{\{x\} : x \in X\}$ as base, \mathscr{T}_2 be generated by {{1}, {1, 2}, {3}, {4}, ..., {n}, ...} as base, \mathscr{T}_3 be generated by {{1}, {1, 2}, {1, 2, 3}, {4}, {5}, ..., {n}, ...} as base and \mathcal{T}_n be generated by $\{\{1\}, \{1, 2\}, \dots, \{1, \dots, n\}, \{n+1\}, \{n+2\}, \dots\}$ as base. Then \mathscr{T}_n is a C-topology for each $n \in X$, but $\bigcap \{\mathscr{T}_n : n \in X\} = \{\phi, \{1\}, \{1, 2\}, \{1\}, \}$ 2, 3], ..., X] and $\bigcap \{\mathscr{T}_n : n \in X\}$ is not a C-topology.

EXAMPLE 7.5. The supremum of two C-topologies need not be a C-topology.

Norman Levine

98

Let $X = \{1, 2, \dots, n, \dots\}$ and $\mathcal{T}_1 = \{\phi, \{1\}, X\}, \mathcal{T}_2 = \{0: 0 = \phi \text{ or } 0 = X \text{ or } 2 \in 0, 1 \notin 0\}$. Since \mathcal{T}_1 and \mathcal{T}_2 are each compact, it follows that each is a C-topology. In $\mathcal{T}_1 \vee \mathcal{T}_2$, $\{2\}$ is compact, but its closure is $\{2, 3, 4, \dots\}$ which is not compact.

EXAMPLE 7.6. The supremum of a chain of compact topologies need not be a C-topology. Let $X = \{1, 2, \dots, n, \dots\}$ and $\mathcal{T}_n = \{\phi, X, \{1\}, \{1, 2\}, \dots, \{1, \dots, n\}\}$ for each positive integer *n*. Then each \mathcal{T}_n is a compact topology, but $\{1\}$ is compact in $\sup \mathcal{T}_n$, but the closure of $\{1\}$ is not compact in $\sup \mathcal{T}_n$.

EXAMPLE 7.7. An intersection of two C-sets need not be a C-set. Let (X, \mathcal{T}) be the space in example 7.1, $Y = X \cup \{a, b\}$ and $\mathcal{U} = \mathcal{T} \cup \{Y\}$; let $A = X \cup \{a\}$ and $B = X \cup \{b\}$. Then A and B are compact subsets of (Y, \mathcal{U}) and hence \mathcal{C} -spaces, but $A \cap B = X$ which is not a C-set.

EXAMPLE 7.8. An intersection of a chain of C-sets need not be a C-set. Let (X, \mathcal{T}) be the space in example 7.1 and let $Y = X \cup \{-1, -2, -3, \dots, -n, \dots\}$, $\mathcal{U} = \mathcal{T} \cup \{Y\}$. Let $A_n = X \cup \{-n, -(n+1), \dots\}$ for each *n*. Then $\{A_n : n = 1, 2, \dots\}$ is a chain of compact sets, but $\bigcap \{A_n\} = X$ which is not a C-set.

The Ohio State Univ. 231 West 18th Avenue Columbus, Ohio 43210

U. S. A.

REFERENCES

- [1] Norman Levine, On the intersection of two compact sets, Rendiconti del Circolo Mathematico di Palermo, Serie 11-Tomo M, 1968.
- [2] Norman Levine, Simple extensions of topologies, American Mathematical Monthly, Vol. 71, No.1, January, 1964.
- [3] Stephan Willard, General Topology, Addison-Wesley Publishing Company, 1970.