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SPACES IN WHICH THE CLOSURE OF A COMPACT SET IS COMPACT

By Norman Levine

1. Introduction

Well known conditions for a space to have the property that compact subsets
have compact closures are: compactness, regularity, Hausdorff (theorem 2.2).
Spaces with this property are called C-spaces. Example 7.1 shows that T, is
not a sufficient condition for a space to be a C-space.

In theorem 2.5, we relax the compactness of X and. show that X isa C- -space

if the derived set of X is compact. We introduce the concept of weakly Haus-
dorff and show that it is a sufficient condition for a space to have property C

(theorem 2.7). Normal and metacompactness together imply property C (theo-
rem 2.8).

Closed subspaces of C-spaces are shown to be C-spaces (theorem 3.1) and dis-
joint sums of C-spaces are shown to be C-spaces (corollar} 3.4). A sufficient
condition is given for the intersection of two C-sets to be a C-set (theorem
3.5). Example 7.7 shows that in general, the intersection of two C-sets need

not be a C-set. A product space is shown to be a C-space if and only if each
factor space is a C-space (theorem 4.1).

‘In theorem 5.2, a necessary and sufficient condition is given for a simple ex-
tension of a topology to be a C-topology.

If f: (X, )=, Z) is a surjection and .9 is the weak topology, then %
is a C-topology if and only if Z is a C-topology (theorem 6. 1).

In §7, examples are given relative to infima and suprema of C-topologies and
intersections of C-subsets of a space.

2. Sufficient condifions

DEFINITION 2.1. A space (X,.9 ) will be called a C-space and .7~ will be
called a C-topology iff for each compact set KCX, then ¢(K) is compact, ¢

denoting the closure operator. A subset ACX is called a C-set iff (4, ANS )
1s a (-space.
We list the well known results of such spaces in

THEOREM 2.2. (X, Z) is a C-space if any one of the follawmg hold :
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() (X, F) is compact (i1) (X, 5 ) is regular (iii) (X, 9 ) is HausdorfY.

We shall weaken conditions (i) and (iii) to get theorems 2.5 and 2.7. But
first we prove two lemmas.

LEMMA 2.3. A space (X, 7 ) is a C-space iff FCc(K)—K implies that F is
compact when F is closed and K is compact.

PROOF. Let (X, .9) be a C-space and FCc(K)—K. Then FCc¢(K) and ¢(K)
is compact. Thus F is compact, being a closed subset of ¢(K).

Conversely, let KCX, K compact. Suppose c(K)CU{O,:a&E4d, 0 €5 .
Since K is compact, there exist «; such that KCO_ U--U0, . Let F=c(K)~-(0,
U“an," ). Then FCe¢(K)—K and hence ¥ is compact. There exists then 3|,
s, B, in 4 such that FCOg U --- UO, . It follows then that ¢(K)CO, U--UO

Uoﬁlu °e UOﬁ_- |

LEMMA 2.4, If (X, 9) is compact, then X' is compact, X' denoling the de-
7ived set of X. -

PROOF. Let x$X"; then {x}& .9 and X’ 1s closed.

THEOREM 2.5. Let (X, F ) be a space and suppose that X' is compact. Then
(X, F) is a C-space.

PROOF. We employ lemma 2.3 let FCc(K)—K, F being closed and K be-
ing compact. Then FCK'CX’ and FCX’. It follows then that F is compact.

To obtain a generalization of (iii) in theorem 2.2, we introduce

DEFINITION 2.6. We say that a space (X, .7 ) is weakly Hausdorff iff c(x)
=c(y) whenever there exists a net S : D—X for which lim S=x and lim S=y.

THEOREM 2.7. If(X, 7) is weakly Hausdorff, then (X, 7 ) is a C-spaces.

PROOF. Let c(K)CU{0,:a<4, K compact and 0,&5 . Then KCO, U
U0, for some a4 Let xEc(K). There exists then.a net S: D—K such

that lim S=x. Since K is compact, there exists a subset T : E—K and a point
Y&K such that lim T=. Since lim T'=x, it follows that ¢(x)=c(¥). Now y&e0,,

for some 7 and hence ::;‘EOm. Thus c(K)COmU---UOm and c¢(X) is compact,.

THEOREM 2.8. Let (X, 7 ) be normal and metacompact. Then (X, 9 ) is a
C-space.
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PROOF. Let KCX, K compact and suppose that c(K)CU{Oa, ra&4). Then
X=U{0,: a€t U{¥c(K)}. Since (X, J7) is metacompact, there exists an open
point-finite refinement {O‘r crel't of {0, a4 {Fc(K)}. But X is normal
and hence there exists an open cover {O*?, :y&l'} of X such that c(O*T)COY for
-each 7€/[. Now KCO*?,lU--UO*n and hence c(K)COTIU---UOr". We may
-assume that O, C%c(K) for each 7. Hence 0, CO, forsome «; and c(K) is

L.
compact.

COROLLARY 2.9. If (X, .9 ) is normal and paracompact, then (X, F ) is a
~C-space.

3. Subspaces

THEOREM 3.1. Let (Y, Z) be a closed subspace of a C-space (X, .9 ). Then
(Y, Z) is a C-space.

PROOF. Let KCY, K compact; then ¢(K) is compact and hence Y Nc(K) is
«compact, Y being closed. Thus ¢, (K) is compact and (Y, ) is a C-space.

- THEOREM 3.2. Let (X, J ) be a space and {F, . a&4} a locally finite closed
cover of X. Then (X, .9 ) is a C-space iff (F,, F,N.7 ) is a C-space for each
a4

PROOF. The necessity follows from theorem 3.1. To show the sufficiency,
llet KCX, K compact. Since {Fa:aEA} Is locally finite, and K is compact,
there exists an OE7 such that KCO and ONFy7#¢ for a;, -, , only. It
follows then that K=U{K ﬂFm c1=/=n} and c(KX)=U{c(K ﬂFa,z.) =i} =
UFa Ne(KNFy) t1=i=nt=Ulc, (KNF,) : 1=i=n}. But KNF,
:and hence ¢, (K(1F, ) is compact since F, is a C-space. It follows then that

IS compact

.¢(K) is compact, being a finite union of compact sets.

COROLLARY 3.3. Let (X, .9) be a space and X =U{0, ! a&4} where O, &9
and 0,N0z=9 when a7#B. Then (X, J) is a C-space iff (O, O,N T ) is a C-
space for each a&A. ' |

PROOF. {0, i ac4} is a locally finite faniily‘ of closed sets.

COROLLARY 3.4 Let (X, 9) be a disjoint wunion of spaces {(X o 7 a)": =
4. Then (X, 7 ) _z's_a C-space iff (X - T H) 28 aL.C:space for each. < A.

PROOF. J[X_:a€4} is a disjoint open cover of X.
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THEOREM 3.5. Let (X, F ) be a space in which the intersection of two compact
sets ts compact (see [1]1). If A and B are C-subsels of X, then ANB is a C-subsel.
(See exampls 7.7, 7.8.)

PROOF. Let KCANB, K cc;mpact. Then CanB (K)=ANBNc(K)=(ANc(K))-
N(BNc(K)) = ¢ (K)Necg(K). Since c,(K) and cgz(K) are each compact, it:
follows that ¢ AN g(K) is compact.

4. Product spaces

THEOREM 4.1. Let (X, F)=x{(X , f"a) €4}, Then (X, J ) is a C-space:
iff (X, ., I ) s a C-space for each a&A.

- PROOF. Suppose (X T ) 1s.a C-space. for each «&4 and let KCX, K cComr-

pact. Noﬁr KCP, Lo (P K) for each a&4d and hence KCX {c (P K) : a&cd}.
But ¢ (P K) is a closed compact set and by the Tychonoff theorem, X {c (P,

K): a&d) is a closed compact set. It follows then that ¢(K) is compact.
Conversely, suppose that (X, ) is a C-space and K ﬁCX P K g compact

Take x €X arbltrary for each a#f8 and let K=X{4,: a4} where A ={x_}
if a#pB and A5=Kﬁ. Then ¢(K)=X {Ca(Aa) a4} and ¢(X) is compact since:
K 1s compact. Again by the Tychonoff theorem, c ﬁ(K 5) 1S compact.

9. Simple extension of a topology

DEFINITION 5.1. Let .9~ be a topology on a set X and let ACX, A&7,

Then 9 [4] is defined to be I~V {#, A, X} and is called the simple extension:
of & by A (see [2]).

THEOREM 5.2. Let (X,.9) be a space and suppose that F&ET , F closed. Then:
J [F] is a C-topology iff FNT and FFN.I are C-topologies.

PROOF. In [2], it is proved that FN.S =FN.Z [F] and FFN9 =FFNST
[F]. Furthermore, F and €F are each open relative to .7 [F] and hence by
corollary 3.3, (X, . [F]) is a C-space iff (¥, FN.Z [F]) and (¥ F, €FN9S
[FF]) are C-spaces. The theorem then follows.

6. Transfer topologies

THEOREM 6.1, Lel f: (X, I )=, &) be a surjection with .9" the weak !o-
pology. Then F is a C-ltopology iff Z is a C-topology.
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PRCOF.- Let & be a C-topclogy and suppose that KCX, K ‘compact. “Them
fIK] is compact and hence ¢(f[K]) is compact in Y. But c(I{h)-Cf—"l 'c(_f[f(] L
and f"1 c(f[K]) is compact. It follows then that Lc(f\_’) 1S compact. |

Conversely, let KCY, K compact. Then f—lK Is compact and hence c(_f—lK ):

is compact. Then since fis a closed transformation, fc(f_"lK)Dc(K ) and hence

c(K) is compact.

Property C is not invariant under continuous open surjections (see example:
7.2). |

" 7. Examples

,l EXAMPLE 7.1. T, does not imply property C. Let X={1, 2, -, », -} and
K=1{1, 3, 5, -+}. Let & ={0:0=¢ or KNZO is finite}. It is easy to see that:
7" 18 a T, topology for X, K is compact, ¢(K)=X and X is not compact.

r_-EXAMPLE 7.2.. A continuous, open image of a C-space need not be a C-space.
In- particular, quotient spaces of C-spaces need not be C-spaces. Let (Y, ) be:
an arbitrary space which is not a C-space. There exists a Hausdorff 1spa'c',e (X,
7~ ) and a continuous open surjection f: (X, 7 )=, Z) (see [3], page 92)..
By (ii1) of theorem 2.2, (X, .9 ) is a C-space.

EXAMPLE 73 The intersection of two C-topologies need not be a C-topology..
Let X=1{1, 2, 3, -, n, -}, Z={{1}, {1,2}, {3}, {3,4}, -, {2n-+1}, {2n+1,
2n+2}, -}, Fo={{1}, {2, 3, {4, 5}, -, {2», 2n+1}, -}, F; generated by% ..
as base and % generated by &, as base. Then .9 and 5, are each C-to--
pologies since compact sets are finite in each topology and the closures of com-
pact sets are finite. But 9 N.% ={{1}, {1, 2, 3}, {1, 2, 3, 4, 5}, -~} which:
1s not a C-topqlqu since {1} is compact, but ¢{1} =X which is not compact.

EXAMPLE, 7.4. An intersection of a chain of C-topologies need not be a.
C-topology. Let X={1, 2, -, n, -+}, F be generated by {{x}:xEX} as
base, “, be generated by {{1}, {1, 2}, {3}, {4}, -, {»}, -} as base, % be
generated by {{1}, {1, 2}, {1, 2, 3}, {4}, {5}, ---, {u}, -} as base and I~ be:
generated by {{1}, {1, 2}, ---, {1, -, un}, {#+1}, {n+2}, ---} as base. Then
7 is a C-topology for each #EX, but N {7 weEX}=1{¢, {1}, {1, 2}, {1,
2, 3}, -, X} and N{F, : #&X} is not a C-topology.

EXAMPLE 7.5. The supremum of two C-topologies need not be a C-topology..
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let X={1, 2, ¢«, 5, <} and 9 ={p, {1}, X}, % ={0:0=0¢ or O=X or 20,
1&£0}. Smce Z1 and % are each compact, it follows that each is a C-topology.

In 97 V.%, {2} is compact, but its closure is {2, 3, 4, ---} which is not com-
pact.

EXAMPLE 7.6. The supremum of a chain of compact topologies need not be
a C-topology. Let X={l, 2, -, #, -} and g =16, X, {1}, {1, 2}, -, {1,
-+, n}} for each positive integer #». Then each 9 is a compact topology, but
{1} is compact in sup I~ , but the closure of {1} is not compact in sup 7~ -

EXAMPLE 7.7. An intersection of two (-sets need not be a C-set. Let (X,
7 ) be the space in example 7.1, Y=XU/{e, b} and Z=9 U{Y};: let A=XU
{a} and B=XU{bd}. Then A and B are compact subsets of (¥, %) and hence
{-spaces, but ANB=X which is not a C-set.

EXAMPLE 7.8. An intersection of a chain of C-sets need not be a C-set. Let
(X, J) be the space in example 7.1 and let Y=XU{-1, -2, -3, -, -=n,
-}, =7U{Y}. Let A,=XU {—n, —(#+1), -} for each #. Then {4, n=
1, 2, -} is a chain of compact sets, but N{4,}=X which is not a C-set.

The Ohio State Univ.
231 West 18th Avenue
Columbus, Ohio 43210
U. S. A.

REFERENCES

[1] Norman Levine, Or the intersection of two compact sets, Rendiconti del Circolo Math-
ematico di Palermo, Serie 11-Tomo M, 1968.

f2] Norman Levine, Simple extensions of topologies, American Mathematical Monthly,
Vol. 71, No.1, January, 1964.

{3] Stephan Willard, General Topology, Addison-Wesley Publishing Company, 1970,



