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SP ACES INWHICH THE CLOSURE OF A COMP ACT SET IS COMP ACT 

By N orman Levine 

1. Introduction 

Well known conditions for a space to have the property that compact subsets 

have compact cIosures are: compactness, regularity, Hausdorff (theorem 2.2). 

Spaces with this property are called C-spaces. Example 7.1 shows that T1 is 

not a sufficient condition for a space to be a C-space. 

In theorem 2.5, we relax the compactness of X and. show that X is a C-space 

if the derived set of X is compact. We introduce the concept of weakly Haus­
dorff and show that it is a sufficient condition for a space to have property C 
(theorem 2.7). Normal and metacompactness together imply property C (theo 

rem 2.8). 

Closed subspaces of C-spaces are shown to be C-spaces (theorem 3.1) and dis-

joint sums of C-spaces are shown to be C-spaces (corollary 3.4). A sufficient 

condition is given for the intersection of two C-sets to be a C-set (theorem 

3.5). Example 7.7 shows that in general, the intersection of two C-sets need 

not be a C-set. A product space is shown to be a C-space if and only if each 
factor space is a C-space (theorem 4.1). 

In theorem 5.2, a necessary and sufficient condition is given for a simple ex­

tension of a topology to be a C-topology. 

If 1: (X, Y) • (Y, Z!) is a surjection and Y is the weak topology, then Y 

~s a C-topology if and only if Z! is a C-topology (theorem 6. 1). 

In ~ 7, examples are given relative to infima and suprema of C-topologies and 

intersections of C-subsets of a space. 

2. Sufficient conditions 

DEFINITION 2.1. A space (X, ‘!T) will be called a C-space and ‘!T will be 
called a C-topology iff for each compact set KCX, then c(K) is compact, c 

denoting the cIosure operator. A subset ACX is called aC-set iff (A, AnY) 

is a C-space. 

We list the well known results of such spaces in 

THEOREM 2.2. (X , ‘!T) is a C-space zf any one 01 the lollowing hold: 
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(i) (X. ‘fT') is compact (ii) (X. Y) z's regular (iii) (X. ‘r) t's H ausd 0κff， 

We shall weaken conditions (i) and (iii) to get theorems 2.5 and 2.7. But 

first we prove two lemmas. 

LEMMA 2.3. A space (X. Y) t's a C-space iff FCc(K)-K t'mplies that F is 

compact μIhen F t's closed and K z's compact. 

PROOF. Let (X. Y) be a C-space and FCc(K)-K. Then FCc(K) and c(K) 

is compact. Thus F is compact. being a closed subset of c(K). 

Conγersely. let KCX. K compact. Suppose c(K)CU {O C< : αεJ}， 0αε ‘r. 
Since K is compact. there exist αz such that Kc=ogl U · · UOa”. Let F= c(K) - (O l 

U"UOα ). Then FCc(K) - K and hence F is compact. There exists then βl’ 

...• ßm in J such that FCOß. U … UOß •• It follows then that c(K)ζOglU --UOα1 

UOß, U.' UOß •• 

LEMMA 2.4. If (X, ‘fT') . is compact. then X' is compact. X' denoUng the de­

r t'ved set of X. 

PROOF. Let x$X’ ; then {x}E ‘r and X' is closed. 

THEOREM 2.5. Let (X. ‘r) be a space and suppose that X' z's compact. Then 

(X. Y) is a C-space. 

PROOF. We employ lemma 2.3; let FCc(K)-K. F being closed and K be­

ing compact. Then FCK’CX' and FCX'. It follows then that F is compact. 

To obtain a generalization of (iii) in theorem 2.2, . we introduce 

DEFINITION 2.6. We say that a space (X , Y) is weakly Hausdorff iff c(x) 

=c(y) whenever there exists a net S : D• X for which lim S=x and lim S=y. 

THEOREM 2.7. If(X. ‘ 'T) is weakly Hausdorff. theκ (X. ‘r) is a C-spaces. 

PROOF. Let c(K)ζU{Oa: αεJ}， K compact and Oaεr. Then KCOa,U 

---U0% for some αiεJ. Let xεc(K). There exists thena net S : D• K such 

that lim S=x. Since K is compact, there exists a subset T : E• K and a point 
yεK such that lim T=y. Since lim T=x. it follows that c(x)=c(y). Now yεoαt 

for some i and hence xεOa，" Thus c(K)COa， U"'UO，따 and c(K) is compact. 

THEOREM 2.8. Let (X. .!Jη be normal and metacompact. Then (X ’ ‘'T) is a 

C-space. 

• 
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PROOF .. Let KCX. K compact and suppose that c(K)CU {Oα : αεL1}. Then 

X= U {Oa : aεL1}U{~c(K)}. Since (X. ‘!T) is metacompact. there exists an open 

point-finite refinement {Or: rεn of {Oα : α ε L1} U {~c(K)}. But X is normal 

:.and hence there exists an open covcr {O류 : rEn of X such that c(O류)ζOr for 

'each rEr. Now KCO* r, U .. UO작. and hence c(K)COr,U"'UOr •. We may 

,;assume that Or，(/:.~ c(K) for each z'. Hence Or，CO，αt for some αi and c(K) is 

compact. t ‘ 

COROLLARY 2.9. If (X. ‘!T) z's normal and paracom，엉act. then (X. ‘!T) is a 

-C-space. 

3. Subspaces 

THEOREM 3.1. Let (Y. z.') be a closed subspace of a C-space (X. ‘!T). Then 

’{Y. z.') is a C-space. 

PROOF. Let KCY. K compact; then c(K) is compact and hence ync(K) is 

.compact. Y being closed. Thus cy(K) is compact and (Y. z.') is a C-space. 

THEOREM 3.2. Let (X. ‘!T) be a space and {F a : αεL1} a locally fintïe closed 

.cover of X. Then (X • .:T) is a C-space zff (F a' F an .:T) z's a C-space for each 

‘aε.1. 

PROOF. The necessity foIlows from theorem 3.1. To show the sufficiency. 
rIet KCX. K compact. Since {F a : αεL1} is locaIly finite. and K is compact. 

‘there exists an OE.!T such that Kζo and OnF a{F- cþ for αl' …, αn only. It 

'follows then that K = U {KnF이 : 1르z·르n} and c(K) = U {c(KnF ai) : 1르z·르n} = 

1U {Fa.nc(KnFαt) : 1든Z르1z}=U {ca ，(KnFa): 1든t르n}. But KnFα‘ is compact 

:and hence cα， (KnFa) iscompact since Fa, is a C-space. It foIlows then that 

.c(K) is compact. being a finite union of compact sets. 

‘COROLLARY 3.3. Let (X. ‘!T) be a space and X= U {O~: αεL1} where 0 ε 7 
α 

-andoanoβ=cþ when a，t=β. Then (X’ ‘r) is a C-space zff (0 a' 0 an .:T) is a C-

'$pace for each αε.1. 

PROOF. {Oα : αEL1} is a locaIly finite family of closed sets. 

COROLLARY 3.4 Let (X ’ ‘r) be a dz'sjoint μnionof spaces {(Xa’ 
L7g) : aε 

.4} •. T hen .(X. ‘:T) z's a C-space iff , (X à ’ ‘7g) is a C-spacefor eack αEL1. 

PROOF. 
‘{Xa : αE4} is a djsjointopen cover of X. 
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THEOREM 3.5. Let (X, Y) be a space z'n whz"ch the z"ntersecUon 01 tzνo compact‘ 

sets z's compact (see [1]). 11 A and B are C-subsets 01 X , then AnB z"s a C-subset. 

(See examPls 7.7, 7.8.) 

PROOF. Let KCAnB, K compact. Then c AnB (K)=AnBnc(K)=(Anc(K)). 

n(BncCK)) = cA(K)ncB(K). Since cA(K) and cB(K) are each compact, it 

folIows that c AnB(K) is ::ompact. 

4. Product spaces 

THEOREM 4. 1. Let (X, Y)= X {(X~ ， ‘r~) : αEA}. Then (X, Y) z"s a C-space' a" a 

zïl CXa ’ ‘r a) z's a C-space 101' each αεA. 

PROOF. Suppose (Xa’ ‘:r a) is a C-space for ~ach aEA and let KCX , K comr 

pact. Now KCp;;l ca(P aK) for each aεA and hence KI >< {Cg(PαK):aεA}. 
But caCPaK) is a closed compact set and by the Tychonoff theorem, X {ca(Paν 
K) : αεLI} is a closed compact set. It follows then that c(K) is compact. 

Conversely, suppose that (X, ‘:r) is a C-space and K ßCX ß' Kβ compact •. 

Take xaεX a arbitrary for each α~ß and let K= X {Aa : aELI} where Aa= {xa}’ 

if α~ß and Aß=K ß' Then c(K) = X {ca(Aa) : aεLI} and c(K) is compact since, 
K is compact. Again by the Tychonoff theorem, c lKβ) is compact. 

5. Sirnple extension of a topology 

DEFINITION 5.1. Let Y oe a topology on a set X and let ACX, A$‘:r. 
Then ‘:r [A] is defined to be ‘:rV {rþ, A , X}. and is called the sz'썼le extensz'on ’ 

of Y by A (see [2]). 

THEOREM 5.2. Let (X. Y) be a space and suppose that F종Y， F closed. Then: 

Y [F] z's a C-toþology zïl Fn‘:r and 'írFny are C-topologz"es. 

PROOF. In [낌 , it is proved that Fn‘:r=Fn‘:r [F] and 'írFnY= 'írFn ..r­
[F]. Furthermore, F and 'ír F are each open relative to ‘:r [FJ and hence by 
corolIary 3.3, (X, Y[F]) is a C-space iff (F, FnY[F]) and ('írF , 'írFny 

[F]) are C-spaces. The theorem then follows. 

6. Transfer topologies 

THEOREM 6.1. Let 1: (X, ‘:r)• (y, V) be a sμrjectz'on wlth ‘:r the weak to­

þo!ogy. Then ‘:r z"s a C-topology 修 V Z"S a C-topo!ogy. 
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PIWOFι Let 2f be a C-topòlö앙y.and' ‘ suppose that KζX;K’ 'compact. Theru 

f[KJ is compact and hence c(f [KJ) is compact in Y; 'But c(lÒC 1-1 c(f [KJ } 

and 1- 1 c(f [K]) is compact. It fo iIows then that c(K) is compact. 

ConverseIy, let KIY, K compact. Then f--1K is compact and hence c(f-1K>

1S compact. Then since 1 is a cIosed trànsformation, Ic(f-1 K)그c(K) and hence、
c(K) is compact. 

Property C is not invariant under continuous open surjections (see example; 
7.2) .. 

7. Êxamples 

EXAMPLE 7. L T 1 does not implyproperty C. Let X= {1, 2, …, n, ... } andl 

K= {1, 3, 5, "'}. Let ‘r= {O: O=rþ or xn '6"O is finite}. It is easy to see tha t: 

Y is a T1 topology for X , K is compact, c(K)=X and X is not compact. 

EXAMPLE 7.2. A continuous, open image of a C-space need not be a C-space. 

lnpllrticular, quotient spacesof C-spaces need not be C-spaces. Let (Y, 2f) be: 

an arQitrary space which is not à C-space. There exists a Hausdorff spac:e (X~ 

‘r) and a continuous open surjection 1: (X, .:T)• (y, 2f) (see [3J , page 92).. 
By (iii) of theqrem 2.2, (X, Y) is a C-space. 

EXAMPLE 7.3. The intersection of two C-topologies need not be a C-topology. 

Let X = {1, 2, 3,"', n , ... }, .Çð 1 = {{1}, {1, 2}, {3}, {3, 4}, ''', {2n+ 1}, {2n十 1,‘ 

2n+2}, …}, .Çð2= {{I}, {2, 3}, {4, 5}, …, {2n , 2n+ 1}, ... }, 칸 generated by.Çð l' 

as base and 킹 generated by g2 as base. Then 킹 and 킹 are each C-to 
pologies since compact sets are finite in each topology and the cIosures of com­

pact sets are finite. But 져n..92 = {{I}, {I, 2, 3}, {1, 2, 3, 4, 5}, ... } which, 
is not a C-topology since {I} is compact, b,ut dl} =X which is not compact. 

EXAMPLE. 7.4. An intersection of a chain of C-topologies need not be a, 
C-topology .. Let X= {1 , 2,‘ …,‘ n, •• }, . .9í be generated by {{x}: xεX} as 

base, ..92 be generated by {{l}, {1, 2}, {3}, {4}, "', {n} , ... } as base, 캉 be 

generated by {{1}, {I, 2}, {l; 2, 3}, {4}, {5}, "', {n }, ... } as base and ‘r
ll 

be‘ 

generated by {{1}, {1, 2}, "', {l, "', n}, {n+l }, {n+2}, ... } as base. Then 

Y n is a C-topology for each 씬X， but n {‘7n : εX} = {rþ, {l}, {1, 2} , {1 , 

2, 3}, "', X} and n {Y ’‘ : nεX} is not a C-topology. 

EXAMPLE 7.5. The supremum of two C-topologies need not be a C-topology .. 
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Let X = {1, 2, ", n, .. } and‘캉={따 {1} , X }, ..5강={O:O=ø or O=X or 2ε0， 

뾰이 . Since 칸 and 킹 are each compact, it follows that each is a C-topology. 

In 칸V..92'， {2} is compact, but its closure is {2, 3, 4, …} which is not coII1-

pact. 

EXAMPLE 7.6. The supremum of a chain of compact topologies need not be 

a C-topology. Let X= {1, 2, "', κ .. } and ‘7f {￠， X, {1} , {1, 2} , …, {1, 

" n}} for each positive integer n. Then each .r n is a compact top이ogy， but 

{1} is compact in sup ‘7 n’ but the closure of {1} is not compact in sup .Y‘ n' 

EXAMPLE 7.7. An intersection of two C-sets need not be a C-set. Let (X, 
‘ ::r) be the space in example 7.1, Y=XU{a, b} and ~=‘::rU {Y}; Iet A=XU 

{a} and B=XU {b}. Then A and B are compact subsets of α"， ~) and hence 

C-spaces, but AnB=X which is not a C-set. 

EXAMPLE 7.8. An intersection of a chain of C-sets need not be a C-set. Let 

{X, ‘r) be the space in example 7.1 and Iet Y=XU {-1, -2, -3, "', -n, 

... }, ~=‘::r U{Y}. Let An=XU {-.n, -(n+1), …} for each n. Then {An: n= 

1, 2, …} is a chain of compact sets, but n {An} =X which is hot a C-set. 
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