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ASSOCIATED SEMIGROUPS BETWEEN TOPOLOGICAL SPACES

By Sung Kag Chang

0. Introduction

A few authors [3], [7] have defined several types of semigroup structures on
topologibal spaces and studied the relations between semigroups and corresponding
spaces.

In this paper, we start by defining another semigroup structure between
two spaces, and call it an associated semigroup between two corresponding

spaces.
Our purpose of this paper is to study the relations between associated

semigroups and corresponding spaces.

1. Preliminaries

Throughout, X, X’, ¥ and Y’ will denote all T-spaces.

DEFINITION 1.1. Let X and Y be spaces. A map f from a subspace of X onto
a. subspace of Y is called a c-map between X and Y 1if it satisfies the following

conditions;
(1) the domain of f is closed in X.

(2) the range of f is closed in Y.
(3) f 1s continuous g_r;d-rﬂfu“a‘cﬂ.

DEFINITION."1,2. Let X and Y be spaces. For a given ¢-map p from ¥ into.
X, the multiplication f*g of two c-maps f and g between X and Y is defined
as the composition feopog.

Then the set S(X,Y;p) of all c-maps between X and ¥ with the multiplicatibn
* 1S a semigroup.

Hereafter, we call this semigroup S(X,Y :$) as an associated semigroup between
X and Y.,

Conventionally, we have the following notations.

NOTATION 1.3. Let S(X,Y;:p») be an associated semigroup between X and Y.
For an element fFES(X,Y :p),
(1) Dom (f) denotes the domain of f,
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(2) Ran (f) denotes the range of £,
(3) 0 denotes the empty map,
(4) A, denotes f if Dom (f)=A and Ran (f)={y}.
In particular £, if Dom (f)={x} and Ran (f)={y},.
(5) if A is a subspace of X, f|A denotes the restriction of f to AMDom (f):.

2. Homomorphisms between associated semigroups.

LEMMA 2.1. Let W be any homomorphism from an associated semigroup S(X, .
Y p) into an associated semigroup S(X', Y'; p") which maps all constants in S(X,
Y p) into all constants tn S(X', Y'; p’). Then for any: canstanits Ay and B, in
S(X, Y; p),

Ran [TF(AJ,)] =Ran [T By)}‘ .

PROOF. It is sufficient to show that for any constant Ay in S(X, Y;p), Ram
[!P'(Ay)] =Ran [¥(X J,)]... Since ¥ maps all constants in S(X, Y ;p) into all constants:
in S(X’,Y";p"), there exist constants W _ and A’ (#0) im S(X’,Y”";p’) such that.
¥(X,)=W, and ZP'(AJ,)=A’”. Since X y*Ay"—"Ay, A’F=WAJ,).=W(X y*Ay)“—‘?F(X y)*.-
(A J,)=17’1/'1”;-!%14"'”. Thus A’ =W »A’ 0.

Therefnre u=v, 1.e. Ran [W(Xy)]=Ran [W(Ay)].

LEMMA 2.2. Let ¥ be any homomorphism from S(X, Y:; p) into S(X’, Y’"; p')
which maps all constants tn S(X,Y :p) into all constants tn S(X’, Y’ D).
Then for any constants f and g in S(X, Y ; p),
Dom [Y(f)]1=Dom[¥(g)]l if Dom (f)=Dom(g).

PROOF. Suppose Dom(f)=Dom(g)=A and Ran(f)=y;, Ran(g)=y, Thens
there exists constants A%, , and A’y , in S(X",Y";p")such that
(4,)=4"y,, and (4,)=4", ..
Since X, *A . A . X *A by Lemma 2.1,
V(X A )=W »A"y =4,
V(X xA)=W x4, =4, .
Thus A"|=4'; lL.e. Dom [¥"(A4, )] =Dom [¥(4,)]

, and

THEOREM 2.3. Let ¥ be a homomorphism from an associated semigroup S(X,
Y: p) into an associalted semigroup S(X’', Y’ p’) which maps all canstants in S.

(X,Y ) onto all constants in S(X’, Y’ : p’). Then there exist a continuous and’
closed map h from Ran(p) onto Ran(p’'), arnd a map k from'Y onto Y’ such that
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for any element f&S(X, Y; p), the following diagram commules,

Dom(f)ARan(p) A Ii' y —_— — Ran(p) |
15 k A
Dom [_1}f(f D10 Ran(p') (/) . - Y’ P Ran(p')

In this case, h and k are uniquely determined by V.

PROOF. By Lemma 2.1, we can define a map 2 from Y into Y’ as the
following way, for each y&Y, 2(y)=y" if for some constant AES(X,Y; p),
Ran[¥(4)]=y". ' |

Then we have the follows. Ior any y, and », in p (%), any given x&Ran
(0), D' (R(y)=p"(R(yy)). | |

Suppose k(y)=," and k(¥,)=y,, »'(y,)=% and p'(y;" )=z,

Then there exist constants f and g in S(X’, Y’: »’) such that U(x,)=f, ¥
(xyﬂ)=g. By Lemma 2.1. Ran(f)=y,” and Ran(g)=y,’, and by Lemma 2.2, Dom

(f)=Dom(g) say, A’.
Since £z *x =x and x *x =x

Y1 Y2 Y1 Yz Wi ¥ye'
7 F 4 I 4 W4 F 4 F 4
, = * = * r— * — , % .
4 y w(xy: xye) w(xy:) ?.U'(xyz) 4 yi’ 4 y: and 4 ¥ 4 ¥z A '’

Thus z,"=p"(y,") and xz’-—'p’(yz’) are in A’. Because ¥ maps all constants in
S(X, Y; p) onto all constants in S(X’, Y’; p’) there exists a constant Ay. in
S(X,Y; p) such that ¥ (4 )=z .. . L |

Then 4,xx, 70 l.e. p(y,)=x€4. So Ayl*xﬁ:xyl.

Therefore W(Ayl*xyz) =U(A yl)*?ff(x J=x, ’ J',I,*A’ go=A4 g

So x,"=p"(3,)=x,". |

Thus we can define a map % from Ran(p) into Ran(p’) as the following way,
for each x&Ran(p), k(x)=p"(k(y)) for any yep_l(x).

Then hop=p’ok,

By the similar way, we can obtain that for any f&S(X,Y;p), kof=¥( f)oh.

Thus the given diagram commutes.

Moreover the maps % and &2 are surjections, 2 maps Dom(f)NRan(p) onto

Dom [¥'( )] NRan(p’) for any f&S(X, Y:p) from the fact that ¥ maps all
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constants In S(X, Y; p) onto all constants in S(X’, ¥’; p’).

From the above facts, we can easily see that % and % are uniquely determined
by . | | |

Finally, to show that % is continuous' and closed. Suppose A’ is any closed
subset of Ran(p’). Then there exists a constant f’ in S(X’, Y’: pf) such that
Dom(f')=A". Since ¥ maps all constants in S(X, Y; p) onto all ‘~'éonstants in
S(X,Y’;p"), there exists an element f in S(X,Y:p) such that T (f)=f".

Since the given diagram commutes, | k_l(A’)=Dom(f)ﬂRan(p). Thus % is
ccontinuous. By the similar way, # is closed. This proves the theorem.

From the above theorem, we have the following corollary.

‘COROLLARY 2.4. In the Theorem 2.3, for any fES(X, Y: ), E|Rarn(f) is
continuous and closed, And if ¥ is injective, then h and k are injective.

In the next part, we consider the case that in an associated semigroup S(X,

Y :p), the map p is surjective, i.e. Ran(p)=X. We denote such an associated
.semigroup by S*(X, Y; p).
Then we can obtain the following lemma.

LEMMA 2.5. Let f be an element of S*(X, Y ; p). Then f s a coustant if and
only if frgrf=f or O for any g&S*(X, Y ).

Then we have the following theorem.
THEOREM 2.6. A map Y from S*(X,Y;p) onto S*(X',Y";p’) is an isomorphism

'if and only if there exist a homeomorphism h from X onto X' and a bijection k
Srom Y onto Y’ such that for any fES*(X,Y ;p), the following diagram commutes;

Dom( f )————-———-—-—-—-’i—-————i— Y ? X
h k | h

. ’ Y
'Dom [Y(f)] ) 4 - a7

and k maps Ran(f) homeomorphically onto Ran{¥ (f)].

PROOF. (Necessity) Let ¥ be an isomorphism from S*(X,Y:») onto S*(X’,
Y’':p"). By the Theorem 2.3, and Corollary 2.4, it is sufficient to show that
" maps all constants in S*(X, Y; ) onto all constants in S*(X’,Y”:p"). Suppose
J is any constant in S*(X,Y;p) and g’ is any element in S*(X',Y’":p"). Then
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there exists an element g in S*(X,Y :p) such that
| Y(g)=g'.

By Lemma 2.5, fxgxf=f or 0. Thus Y (fxgxf)=U(HNxg’sT(FH=T(f) or 0.
So, ¥'(f) is a constant. - - | |

By the similar way, for any . constant f* in S*(X’, Y’: »)), Zﬁ'—l(f’) is a
constant. - '

(Sufficiency) Suppose % and % are two maps which satisfy the necessary
conditions. Then for any f&S*(X, Y; p), the composition kofnk“l iS a c-map
between X’ and ¥’. Thus we can define a map ¥ from S*(X, Y:p) into S*
(X, Y :p") by ?.U‘(f)=kofoku1 for each fES*(X,Y ;). Then ¥ is an isomorphism
from S*(X,Y;p) onto S*(X’, Y’; ). This proves the theorem,

REMARK. In the Theorem 2.6, the map % need not be a homeomorphism.
Next we have an example. | S

EXAMPLE. Let Y, be the set {1,2,3,4} with the discrete topology, and Y,
the set {#>>5|x: natural numbers} with the cofinite topology. Assume Y is the
-tbpological sum of ¥, and ¥, i.e. Y=Y ,+Y,. Let Y be the set of all natural
numbers with the discrete topology. Assume X=X’ is the set {0,1,2,3,4} with
the discrete topology. Then X,Y and Y’ are Ty-spaces. Define a map p from
Y onto X and a map p’ from Y’ onto X by

p(x)=p'(x)=x if 124,
p(x)=p'(x)=0 if 5<x. |
Then p and p” are continuous and closed. Define a map % from X onto X as

the identity map, and a map £ from Y onto Y’ as also the identity map. For
any f&eS*(X,Y;:p), kufﬂk_1=f is also a c-niap between X’ and Y’. Thus we
can define an isomorphism ¥ from S*(X, Y; p) onto S*(X',Y":p") by T(f)=
.knfulfl for any f&5S*(X,Y ;p). But £ is not a homeomorphism.

COROLLARY 2.7. Assume there exists an element f&S*(X,Y :p) such that Ran
(f)=Y. Then two associated semigroups S*(X,Y:p) and S*¥(X’, Y'; p’) are
isomorphic if and only if there exist two homeomorphisms h and k from X onto X’
and from Y onto Y’ respectively such that hop=p’ok.

Let p be a map from Y into X. [I(p) denotes the set of all p_l(x) for

x&Ran(p).
Then we have the following corollary.

COROLLARY 2.8. In S*(X, Y:p) and S¥(X', Y’; p"), assume II(p) and II(p")
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are nbd-finite families, and there exists an element fES*(X,Y :p) such that Ran
(f)=Y. Thern two associtated semigroups S*(X, Y: D) and S*(X', Y’"; p’) are
isomorphic if and only if there exists a bijection ¢ from II(p) onto II(P") suck
that p_l(x) and gz!»(p—l(x)) are homeomorphic for each p"_l(x)EII (D). )

PROOF. By the Corollary 2.7, togethef with [2]-, we can easily prove the
corollary. |
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