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ON CERTAIN REFLECTIONS IN TOPOLOGICAL ALGEBRAIC SITUATIONS
By Temple H. Fay

Abstract

Consider the following commutative square of categories and functors where:
T and U are (regular epi, monosource) topological and fibre small, G is alge-
braic and the fo]lowing" two conditions hold: (1) if #: UA—UB and g: VA—
VB are morphisms such that GZ=Tg, there exists a morphism f: A—B such
that Uf=h and Vf=g; (i1) U-initial monosources are carried into 7-initial mo-
nosources by V.,
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Such a square is called a Topological Algebraic Situation (TAS). |

In.a previous work the author showed how much of the classical theory of
topological algebra is recaptured with in this axiomatic setting. In particular,
it follows that if B’ is a “surjective”-reflective subcategory of B, the full
subcategory A" of A, consisting of all objects 4 with VA a B’-object, is “sur-
jective”-reflective in 4 and with U’, V' and T’ the obvious restrictions, GU’'=
T'V' i1s a TAS.

In this note it is shown that if A has a suitable factorization property for
its morphisms, and if B’ is merely epi-reflective in B, then A4’ is reflective in
A. In contrast to the “surjective” case, GU'=T'V’ need not be a TAS. How-
ever, it is shown that U’, V', TV and GU’ are well behaved functors in that
they are topologically algebraic in-the sense of Y.H. Hong.

Examples of this epi-reflection case are the Bohr and zero-dimensional com-
pactifications of a Hausdorff group (or semigroup). By considering the categories
of pairwise Tychonoff bitopological spaces and pairwise Hansdorff bitopological
groups, DBohr and pairwise zero-dimensional pairwise compactifications are
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obtained. This is seen as further justification of the axiomatic approach being
developed.

¢. Introduction

In this note we continue the study of an axiomatic approach to categories
of topological algebras begun in [3]. Consider the commuting square of categ-

B
]T‘

Sel

ories and functors
A
Ul
X

where Sef is the category of sets, (X, &) is an algebraic situation, both of

U and T are (regular, epi, monosource) topological functors having small
fibres. We call this square a Topological Algebraic Situation (T'AS) if the

following two conditions hold:
(i) if £: UA—-UB and g: VA—V B are morphisms with Bh=Tg, there exists

a morphism f: A—B such that Uf=% and Vf=g¢

(ii) U-initial monosources are carried into 7T-initial monosources by V.

The assumption that 7' be (regular epi, monosource) topoldgical and fibre
small assures that Bisa reasonable analoghe of a “topological” category. See
Herrlich [6] and Nel [10]. | |

I'ibre smallness for U is viewed as reasonable since for any algebra there
should be at most a set of topologies making the algebra a topological algebra.
“The (regular epi, monosource) topological reqﬁirement is simply a categorical
interpretation of the following result for Hausdorff groups.

If (G, 1s a family of Hausdorff groups, G is a group, and f;: G—G,
“1s a group homomorphism for each 7 € I. Then the coarsest topology making
each f, continuous is a group topology on G. Morecver, if H is a Hausdorff
group and #: H—G is a group homomorphism, % is continuous when & is en-
dowed with the coarse topology determined by the family (f;); if and only if
f;h is continuous for each ¢ & I. However, G need not be a Hausdorff group
anless the family (f,); is point separating (monosource).

Condition (i) is essentially a “fullness” condition. Loosely speaking, (i) means
any function simultaneously a homomorphism of the underlying algebras and
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«continuous with resnect to the underlying topologies is. a2 morphism of the tono-
tlogical algebras. | | | |
Condition (ii) means an “embedding” of topoldgical algebras is simply an
«embedding of the underlying spaces. Condition (i1) is a powerful conditidn in
that it is closely related to the existence of “the free topological algebra over

.a topological space” (see Theorem 5.3 of [3]).
If (X, &) is any (finitary or infinitary) equationally defined class of uni-

versal algebras of fixed type, B 1is the category of topological spaces, Top,

AN’

.and an object in 4 is an objJect from X endowed with a topology making each
«of the defining operations continuous in the usual manner, and a morphism
between objects in 4 1s simply a homomorphism of the underlying algebras
‘which is continuous on the underlying spaces, then with U, V, G and T the

-obvious forgetful functors, we have a TAS.

If (X, G) i1s the category of {-algebras with forgetful functor G, B is the
wcategory of Hausdorff £-spaces, and A4 the category of k--algebras (see [2]),
then, again, with U, V and T the obvious forgetful functors we have a TAS.

The categories A, B, and X are complete, cocomplete, well powered and
regular epi-cowell powered. Each of the functors U, V, G and T has a left
-adjoint and hence each is limit preserving; each is faithful, hence monomorph-
ism reflecting. Much of the theory of classical topological algebra is recaptured
with a TAS and indeed the main thrust of [3] is to show this.

If B” and X’ are “surjective”-reflective subcategories of B and X respec:-
dvely, and A’ is the full subcategory of A consisting of all objects A with

o

UJA an X ’-iject and VA a B’-object, then A’ is “surjective”-reflective in 4.
Moreover, if U’, V’, T’ and G’ are the obvious restrictions of U, V, T and
iz, then G'U'=TV’ is a TAS [3].

In this paper we consider an epi-reflective subcategory B” of B and the full
subcategory 4”7 of 4 consisting of all objects 4 with VA a B”-object. It follows
tthat 1If 4 has a suitable factorization property for its morphisms, then A” is
san epi-reflective subcategory of 4. But in contrast to the “suriective”-reflect-
jon case above, GU”=T"V” need not be a TAS. However, these obvious
restriction functors U”, V”, T” and GU” are well behaved as they are topologi-
-cally algebraic in the sense of Y.H. Hong [9] (see also S.S. Hong [8]).

This epi-reflection case yields the Bohr and zero-dimensional compeactifications

of a Hausdorff group (or semigroup) as special cases. We obtain furthar new
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examples by considering pairwise Hausdorff bitopological spaces and obtaining-
a Bohr pairwise compactification and a pairwise zero-dimensional compactificat:
jon. This is seen as further justification of the axiomatic approach being:

developed. |
The author wishes to acknowledge helpful discussions with G.C.L. Briimmer-

concerning bitopological spaces and bitopological groups.

1. Preliminaries

For the sake of brevity we refer the reader to the fundamental work by H..
Herrlich [6) and to Section 1 of the important paper [10] by L.D. Nel for the:
notions of initiality and (£, M) topological functor. For the theory of algebraic-
categories and algebraic functors as well as for categorical terminology not.
expressly defined herein, we refer to the text by H. Herrlich and G.E. Strec-

ker [7].
It will be convenient to adopt some notation. The class of all epics(respect-
ively extremal monics) in.a category A4 will be denoted by Ep:i, (resp. Ext

Mono,). 1f V: A—B is a functor, the class of all morphisms f in 4 with Vf
in Ep; (resp. Ext M fmoB) will be denoted by Epé,, (resp., Ext Monoy). 1If M
1S a class of sources in B, denote the class of all V-initial sources (4, f) ; In.
A with the property that (VA, Vi), €M by M.

All subcategories considered are full and replete (=isomorphism closed).

PROPOSITION 1.1 Given a TAS as in Section 1,

(a) Epi, C Epz Pt

(b) If Epi,=Epi g» then Ext Mono, C Ext Monoy.

(c) 4is an (Epzv, Ext Monoy) category if and only if A is (Epiy, Ext Monoy)
factorizable.

PROOF, (a) V is faithful.

(b) If Vf is an extremal monic in B, then f is monic in 4. Let f=me be
the (ep1, extremal mono) factorization of f. Then Vf=VmVe. The hypothesis.
implies Ve 1s an isomorphism and V reflects isomorphisms [3].

(c) If 4 is (Epiy,, Ext Mono,) factorizable, we need only show 4 has the-

(Epty, Ext Mono,) diagonalization property to see 4 is an (Epsy, Ext Mowno,)
category. Let ¢:X—Y be a morphism in 4 such that Ve is epic in B. Let m:

Z—W be a morphism in 4 such that Vm is an extremal monic in B. Assume:
there are morphisms f and g in 4 such that ge=mf. It follows that there:
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exists a morphism %2: VY —VZ such that Vmk=V g and ‘kVe=Vf. Since (GUm)
(Tk)=GUg and monics are G-initial, there exists a morphism %’ : UY—UZ such
that Umk’=Ug and £'Ue=Uf. Now apply condition (i).

Note this argument'can be extended to show 4 is an (Epiy, (Ext Monosource)-
,) category if and only if 4 is (Epiy,, (Ext Monosource),) factorizable.

DEFINITIONS 1.2. Let V:4—B be a functor. A B-morphism g:B—V A is said
- o . S
to V-generate A if for any pair of 4-morphisms 4 —— A4’, (V )g=(V,)g implies

S
ry==.

The functor V' 1s called topologically algebraic if for each family (4); of
| o by
A-objects and each source (B, B——VA.), in B, there exists a V-initial source

(4, A f‘—-Az.) , and B-morphism &: B—VA which V-generates A4 and such that
-ﬁ(Vm)b:bz. for each 71 & 1. *

Topologically algebraic functors, first defined by H. -Hong '[9], generalize
the topological functors of Herrlich [6] and most forgetful functors from cate-
gories of topological algebras are topologically-algebraié, -as’1s to be expected.
S.S. Hong [8] has shown that topologically algebraic functors are  precisely
those functors having left adjoints and such that the domain categories are
(epi, initial) factorizable. |

THEOREM 1.3. (S.S Hong) A functor V: A—B is topologically algebraic if
and only if V kas a left adjoint and A is (epi, V-initial)-fatorizable. M oreover,
tf V has a left adjoint and A is (E, V-initial)-factorizable for any class of epics
E, then V is topologically algebraic.

2. The Epi-.:m"i’écﬁon situation

Carsider the TAS GU=TV as defined in Section 0. Let B” be an epi-reflective |
subcategory of B and let A” be the full subcategory of A consisting of all
objects A with VA a B”-object.

THEOREM 2.1. If A is (Epiy, Ext Mono,) factorizable, then A” is Epi,-re-
Sflective in A.

PROOF. From Proposition 1.1, 4 is an (Epz'v, Ext Mono,) category. Thus
a subcategory is Epi,-reflective if and only if it is closed under products and
Ext Monoy,-subobjects. Since B” is closed under products and V is limit preserv-

ing, A” is closed under products. A” is closed under Ext Mono,-subjects since
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B”is closed under extremal subobjects. o |

There are obvious restrictions U”, V” and T” of the functors U, V and T so
that GU"=T"V".

In contrast to the reflection theorem for surjective-reflective subcategories
obtained in [3], GU”=T"V" need not be a TAS. Take, for example, B” to be
‘the category of compact Hausdorff spaces, A” the category of compact Haus-
dorff groups, and X the category of groups. Then neither U” or T” is (reguiar
‘epi, monosource) topological. |

On the other hand, the functors U”, V” and T are well behaved as the next
theorem shows. This theorem subsumes Corollary 2.6 of [8].

THEOREM 2.2. Eack of the functors U”, V”, T” and GU” is topologically
al gebraic.

PROOF. Let E” be the full inclusion of A” into A. Since A” is Epirefl-
ective in 4, E” is (Epiy,, (Ext Monosource), topological and hence A" is an
(EDEy g (Ext Monosaurce) vgr) category. Faithfulness implies Epiyp. C Epi,,.
Every monosource is V-initial. Consequently extremal monources are V E”-initial.
Hence from Theorem 1.3, VE” is topologically algebraic. Further, the fun-
ctor V” must then be topologically algebraic. Similar reasoning yields 77 and
U’ topdlogzically algebraic. Since algabraic funcztors are topoalozically algebraic
and composition of topologically algebraic functors are again so, it follows
that GU” is also topologically algebraic.

EXAMPLES 2.3. Let Haus Grp denote tfle category of Hausdorff groups, Tych
the category of Tychonoff spaces, Haus the category of Hausdorff spaces, and
Grp the category of groups. Then, in the following diagram each of the inner

'm“_

squares (and the outer perimeter) is a TAS. All functors a;e"““forgetful".

Tych Haus RO

Haus Grp

1

Crp ———— o Sel St

Let B’ be the category of all compact Hausdorff spaces and let B” be the
category of all zero-dimensional compact Hausdorff spaces. We may view B’
and B” as full epi-reflective subcategories of either Tyck or Haus. We obtain,
in this setting, the Bohr-compactification and a zero—dimeﬁsional compactificat-
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ion of a Hausdorff group as examples.

Perhaps more interestingly, we obtain an analogue to the Bohr compactif-
ication for pairwise Hausdorff bitopological groups. |

DEFINITION 2.4. A triple ((G, m), P, Q) is a bitopological group if (G, m) is
a group with operation m:GXG—G and P and Q are topologies each making m

continuous in the usual manner and such that inversion (=) ': (G, P)—(G, Q)
is a homeomorphism. ~ |

T. Birsan {0] and, independently, G.C.L. Briimmer [1] have shown that
given such a bitopological group ((G, m), P, Q), ((G, m), PVQ) is a topoldgical'
group. Moreover, if (G, P, Q) is pairwise Hausdorff, then it is pairwise
Tychonoff. , ]

It follows easily that if 4 is the category of pairwise Hausdorff groups, B
is the category of pairwise Tychonoff spaces, then with all functors being
“forgetful” we have a TAS and A4 has the (Epi,, Ext Mono,)-factorization

property.
A B

Gro -—-—_-__.__.___—.—a-.Set

V

Considering the pairwise compact and pairwise zero-dimensional pairwise
compact full subcategories of the category of pairwise Tychonoff spaces, we
obtain Bohr and ra‘irnise zero-dimensional pairwise compactifications of a
pairwise Hausdorff bitopoogical group as examples. For definitions of these
“rairwise” notions we refer the reader to Halpin [5] and Salbany [11].

Univ. of Cape Town
Private Bag Rondebosch, 7700, C. P.
Republic of South Africa.



Temple H., Fay

REFERENCES

(0] Birsan, T. Contribution A\ L’ Etude des Groupes Bitopologiques. Analele - Stiinifice

Univ. Al I. Cusa Din Iasi 19 (1973) 297—309.
[1] Brimmer, G.C.L., Private communication.

(2] Dubuc, E.]J. and H. Porta, Convenient categories of topological algebras and their
duality theory. J. Pure Appl. Algebra 1 (1971), 281-—3l6.

[38] Fay, T.H., An axiomatic approach to calegories of topological algebras. To appear.

{4] Friedberg, M. and J. W. Stepp, A nofe orn the Bohr compactification. Semigroup Fo-
rum 6 (1973) 362—364.

[5] Halpin, M.N., Transitive quasi-uniformities for bitopological spaces. Under submis-
S101. | |

[6] Herrlich, H., Topological functors. General Topology App. 4 (1974), 125—142,

[7] , and G.E. Strecker, Category Theory. Allyn and Bacon, Boston, 1973.

[8[ Hong, S.S., Categories tn which every mono-source is inttial. Kyungpook Math. J.
15 (1975), 133—138. - __

[8] Hong, Y.H., Studies on cafegon'es of universal topological algebras. Doctoral Disser-
tation, McMaster University 1974.

[10] Nel, L.D., Initially structured categories and cartesian closedness. Canad, ]J. Math.
27 (1975), 136113717,

[11] Salbany, S., Bitopological spaces, compactifications and completions. Math, Monog-
raphs, University of Cape Town 1 (1974).



