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O. Abstraet 

LOCALLY ORDER-CONVEX SPACES. 

By V. Murali 

The first part of this note is concerned with a neighbourhood base 
characterisation of locally order-convex spaces. The notions of order융-inductive 

limits and order ultrabornologicity in the class of locally order-convex spaces 
are introduced and studied in the latter part. These are the non-convex 
generaIisation of o-inductive limits and o-bornological spaces. 

1. Introduction 

A locally order-convex space is a partially ordered vector space together with 
a linear topology for which there exists a base of neighbourhoods of the origin 
consisting of order-convex and balanced subsets. Kist [3) studied locally o-convex 
(order-convex and convex) spaces. Iyahen [2J developed concepts of *-inductive 

limits and ultrabornological spaces in the general topological vector spaces 

setting. The objects of this note are to define and give some results on order 

• inductive limits and on order ultrabornological properties of locally order
convex spaces, using analogous techniques of Iyahen [2J (thus generaIising the 
results of Kist [3)). 

In section 2, we define an analogue of a suprabarrel in a topological vector 
space and use it to prove some basic results on locally order-convex spaces. 

:Section 3 is devoted to the results on the finest locally order-convex topologies 

making certain positivc linear mappings continuous (that is, order • inductive 
limits) and on the finest locally order-convex topologies on a partially ordered 

vector spaces. In the Iast section, we study those Iocally order-convex spaces E 

which have the property that every positive Iinear mapping of E with range 

in any locally order-convex space is continuous. 

Regarding the theory of topologicaI vector spaces we refer to Horvath [1J and 

for those undefined order-theoretic terms we refer to Schaefer [5J. 

2. LocalIy order-convex spaees 

DEFINITION 2. 1. A subset U of a partially ordered vector space (E, C) is called 
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an order-conνex sμþrabarrel (hereafter abbreviated to o-suprabarrel) if U is 

balancecl, absorbent and order-convex and, if there exists a sequence (U
lI

) of 

balancecl, absorbent and order-convex subsets of E such that U1+U1C U and 

Un+1 +U
lI
+1C U

lI 
for all n. If, in addition, U is closed we call it an order-convex 

ultrabarrel (o-ulrabarrel). We call (U n)(n= 1, 2…) a defining sequence for U. 

It is immediate that balanced, absorbent, o-convex subsets of a partially 
orderecl vector space (E, C) are o-suprabarrels. However, an o-suprabarrel need 

not be o-convex and need not have a defining sequence of o-convex sets. 
Intersection of a finite number of o-suprabarrels is an o-suprabarrel. If U is a 
suprabarrel in (E, C) , then [U] , the order-convex hull of U is an o-suprabarrel. 

The inverse image of an o-suprabarrel by a positive linear mapping is an 

o-suprabarrel. The image of an o-suprabarrel by a positive linear mapping is 
an o-suprabarrel provided the mapping is onto. 

DEFINITION 2.2. An F-semi-norm ν on a partially ordered vector space (E, C) 

is called monotone if ν(x)드))(y) whenever 0드X르y inE. 

Let U be an o-suprabarrel with a defining sequence (U ,.) (n=l , 2 .•. ) in a 

partially orclered vector space (E, C). By the method of construction on page 
3 of Wealbroeck [6] , we can associate an F-semi-norm )) with U, as follows; 

ν(y)=inf{ß : yεWß}， (yεE) where Wβ=E for ß르1 and Wß~도’ Uk for every 
t,=l 

η 

-k dyadic rational ß= E,’ μ 2-". Suppose E has the decomposition property. then 
k=l ‘ 

Wl3 is order-convex, as it is the sum of order-convex sets Uk· Hence yεwβ and 

O드X드y imply xεWß• That is. ν(x)드))(y) whenever 0드X드y. 

Thus an F-semi-norm associated with an o-suprabarrel is monotone provided 

E has the c1ecomposition property. 

DEFINITION 2.3. (Wong and Ng [7]) A linear topology -r on a partially 
ordered vector space (E. C) is said to be locally order-convex if it admits a 

neighbourhood base at 0 consisting of order-convex sets; in this case. we shall 
say (E. C. -r) is a locally order-convex space. 

REMARK. Locally order-convex topologies were first considered by Namioka 

[4]. He called these topologies locally full. 

The following proposition gives an useful characterisation of a neighbourhood 

base at the origin in a locally order-convex space. 

PROPOSITION 2.4. In a locally order-convex sþace. there exists a base 01 

• 
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neighúourhoods at origin cOJZsisting 01 0-S1깡rabarrels; Conversely, let (E, C) be a

partially orde1-ed vector sþαce and let W be a filter base at the origz'n consis!z"ng 

01 0-S1껑rabalγels with their delining sequences. Then there exists a unique vector 
topology 7: on E lor whiclz E is α locαlly order-convex sþace alld lor which W is 

a base 01 7: ηeighboμrhoods at the origin. 

Proof is straightforward. 

COROLLARY 2.5. The collection 01 all o-suprqbarrels in a þartially ordeγed 

vector space (E, C) is a neighbourhood base lor the linest locally order-conιrex 

topology on E. 

For certain cIass of partially ordered topological vector spaces, the notion of 

locally order-convexity ;s equivalent to a condition in terms of continuons. 

F-semi-norms. We shall make this precise in the next theorem , but first we 

require a lemma due to Namioka [4, p.191. 

LEMMA 2.6. Let (E, C, 7:) be a þartz"ally ordered topological vector space. Then 

the 10llowillg are equivalellt. 

1. The space (E, C, 7:) is locally order-co1Zvex; 

2. Given a 7:-neighbourhood U 01 zero , there exists a 7:-neighbourhood V 01 zero

sμch that 0드x<y lor some y in V iηzplz"es xEU. 

THEOREM 2.7. Let (E, C, 7:) be a paγtially ordered topological vector space with 
decompositz"on property. Then the lollowing statements are equivalent. 

1. 7: is a locally orde1--conνex topology. 
2. The lamz'ly 01 all 7:-continuous nzonotone F-semi-nornzs deternzines the topology 

7:. 

PROOF. (1)::;(2). Let {간} (iε1) be the family of all 7:-continuous monotone 

F-semi-norms, and 7:' be the topology generated by {ν) uε1). It is easγ 

to see tha t 7:' is coarser than 7:. We now show tha t 7: is coarser than 7:'. Let 

U be a balanced 7:-neighbourhood of the origin. Since 7: is locally orderconγex，. 

there exists an o-suprabarrel V contained in U. By the remark preceding 

definition 2.3, the F-semi-norm νv of V , is 7:-continuous and monotone. 

AIso, {xεE: νv(x) <1} ζVCU ; so U is a 7:'-neighbourhood, as required. 

(2) 二ì (1). Let U be a 7:-neighbourhood of O. Then there exists a finite 

number {V i } (i=1 , 2, …, 1Z) of monotone F-semi-norms such that V = {x 

드E : I11장X νi(x)<e; O<e< l} ζU. V satisfies the property (2) of Lemma 2. 6. -
1=1ι .•.. n 
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and so (E, C, 't') is localIy order-convex, 

It is useful to note that there is a method available, for constructing localIy 

order-covex topologies from vector topologies on partially ordered vector spaces. 
We shall not describe it here but refer to [7, p.56). 

We concIude this section with a remark on the finest locally order-convex 
topology. Let e be an order-unit in a partially ordered vector space (E, C). 

Then the set [-e, e] is balanced, convex, and absorbing. Hence the Minkowski 
functional J)e of [-e, e] is a semi-norm on E. Kist in [3] observed that the 

topology 't'e induced by J)e on E is the finest locally o-convex topology. We cIaim 

that 't'e coincides with the finest locally order-convex topology 't' on E : in fact, 

if V is any balanced order-convex 't'-neighbourhood of the origin in E, then V 
is absorbing. So there exists a λ>0 such that ì..eεV， implying λ [-e， e] CV 

Hence V is a 't'e-neighbourhood. 

3. Order 휴-inductive limits 

Let (E, C) be a partially ordered vector space, and (Ei, Ci, 't'i) a family of 

locally order-convex spaces, (z"E I). Let li be a positive linear mapping from Ei 

into E for each iEI. Then the order ￥-inductive limit (hereafter abbreviated 

to o-*-inductive limit) topology on E with respect to the family ((Eμ Ci , 깐) :/) 

is defined to be the finest locally order-convex topology on E for which all the 

positive linear mapping I/s are continuous. 

PROPOSITION 3. 1. 't' always exists on E. 

PROOF. Let 2' be the set of all locally order-convex topologies on E. The 
topology η= 얘， E} is locally order-convex and is the least element of 2'. Since 
finite intersections of o-suprabarrels is an o-suprabarrel, the supremum of an 
arbitrary non-empty family of locally order-convex topologies is again locally 

Qrder-convex. Let 2'0 be the subset of 2' consisting of those topologies for 
which each positive linear mapping 파 is continuous. 2'0 is non-empty since 
ηε2'0' and the supremum of 2'0' which also belongs to 2'0' is obviously the 
required topology. 

The space E equipped with the 0• -inductive limit topology is called the 
o→-indμctz"ve UmU. 

We observe that the 0• -inductive limit topology on E is a linear topology. 
and so weaker than the strongest linear topology on E relative to which all 
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the I/s are continuous. that is. the linear *-inductive Iimit topology as defined 

1n [2. p. 286J. Thus the two topologies coincide if and only if. the linear 

+.-inductive limit topology on E is locally order-convex. At present. we do not 

have an example to show that the two topologies are distinct. 

PROPOSITIO ::-J 3.2. Let (Ei • Ci • 깐) UεI) be a lamt"ly 0/ locally order-convex 

.spaces; For each iε1. let 지 be a positive linear mapψing 01 Ei into a partially 

.(Jrdered vector space (E. C). Let zf = {U} be the colleott'on 01 all o-s때rabarrels 01 

E μfth the property that. lor each z'εI， fk-l(U), 파-l(Un) (n=1.2" ,) are '1:i-

.neighbourhoods 01 0 in Ei' where ‘U i} z·s a dejf%Z.%g seqμence 01 U. Then zf is 

.a base 01 neighbourhoods 010 in E lor the 0• -inductz"ve Umit topolo f[y wtÏh respect 

.to the locally order-convex space3 {Ei } and the positt've linear mappz'ngs (지}. 

PROOF. Clearly. zf forms a base of neighbourhoods of 0 in E for a locally 

-order.convex topology 7:' on E. by proposition 2.4. If Y is a base of balanced. 

-order-convex neighbourhoods of 0 for any other 10caIly order-convex topology 

7:" on E for which all the ζs are continuous. then each W든찢 is absorbing • 

. o-suprabarrel in E. It is straightforward to check that Wε~. and so YcZf 

from which it follows that 7:"C7:'. Thus 7:' is the strongest such topology and 

therefore 7:' is the 0• -inductive limit topology on E. 

COROLLARY 3.3. 11 (F. η) is a locally order-convex space and il g is a postÏz've 

Jinear majψing 01 E into F. the1Z g is contz"nuous wz"th respectto the o-*-z'nduc!z"ve 

Jimit topology 7: on E il alld only zf. g。자 is continuoμs lor each iEI. 

PROOF. If g is continuous, then clearly the mappings g。파 are all continuous. 

‘Conversely. suppose g is a positive linear mapping such that g。지 is continuous 

for each z'ε1. Let Uo be any balanced order-convex η-neighbourhood of the 

-origin in F. Choose a sequence of balanced. order-convex 17-neighbourhoods 
{Un} (n= 1. 2 ... ) such that Un+UnCUn_ l' (n=1.2 .•. ). Then g-l(UO) is a 

balanced. absorbing o-suprabarrel in E. with a defining sequence {g-l(Un)} 

(n=1.2 ... ). AIso 지-l(g -l(Un))=(g。긴) -l(U n) is a 7:(neighbourhood of 0 in Ei 

for each iε1 and n=O.l. 2... Thus. by proposition 2.3. g -l(UO) is a 7:

neighbourhood of 0 in E and so g is continuous. 

Let (E. C) be a partially ordered vector space. 

E_= U {x : xεE， - ta드X드ta} 
‘ tER+ 

For each aεE with a늘O. let 
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Ca=Eanc. 

Then Ea is a subspace and a is an order-unit for (Ea, C). Let 7:a be the Iocally

order-convex topology on Ea induced by the semi-norm J)a of [-a, a] in Ea' 

Then we have the following analogue of proposition 5.2 [3]. 

THEOREM 3.4. Let (E, C, 7:) be a locally order-convex sþace. Then 7: is the linest 

order-convex tOþology on E il and only 1] (E, C,.) is the o-*-inductive limit o/" 

(E (j' C a' 7:) lor a든E， with resþect to inclμsz·0% mα:þþings ia' 

PRODF. N ecessity. Let V be any balanced, order-convex 7:-neighbourhood of 

o in (E, C). Then V is an o-suprabarreI with a defining sequence (Vn) (n=l , 

2" ,), say. The sets vnEa , VnnEa for each aεE， n=1 , 2''' , are balanced, 

order-conγex and absorbing. Moreover VηnEa+VnnEaC二vll_ 1nEaCn=2， 3…)， and'

v1nEa + V1nEaCVnEa for each a드E. That is VnEa is an o-suprabarreI in Ea 

for each aεE. Since 7:" is the finest Ioca lIy order-convex topology in Ea' VnEa ’ 

vnnEa are 7:a -neighbourhoods of origin in Ea' Hence V is an 0• -inductive 

Iimit neighbourhood, by proposition 3.2. 
SμIliciency. Let V be any o-suprabarreI in (E, C) , with a defining sequence 

. -l/T"'..... ....,._..... /.-1 
(V”). Then it is obviousJthat Za (V)=vnEa, (2a (V,z)=VnnEa(%=1, 2…)) is 

an o-suprabarreI in Ea for aεE， and so a 7:a-neighbourhood in Ea' AIso for 

each n二 1 ， 2"' ， V"nEa is an o-suprabarreI in Ea and hence a 7:a-neighbourhood. 

The proposition 3.2, now implies V is a neighbourhood in the order *-inductive 
Iimit topology. Therefore, the order *-inductive Iimit topology coincides with 

the finest order-convex topology by CoroIIary 2.5. 

We concI ude this section with an usefuI analogue of proposition 2.2 of [2]. 

THEOREìvI 3.5. Let (E, C, .) be the order *-inductive limit 01 a lamz"ly ollocally' 

order-convex sþaces (Ei, Ci ’ 자) (iεI) with resþect to þositive lz'near maþþings (껴). 

For each iε1， let V i be a bala!Zced, order-convex 7:{neighboμrhood 010 in Ei' and 

let U be the order-convex hull 01 U ζ’ IlVJ the u쩌on being taken over all j딩·ηite 
φ igψ “ 

subsets iþ 01 1. Then U is a .-neighbourho:Jd 01 0 in E. 

11 1 is countable, then as Virμns thγoαgh a base 01 balanced, order-convex 

τι-neighbourhoods 010 in Ei' the order-convex hull 01 the above sets lorm a base 

01 7:-neïghbourhoods 01 0 in E. 

PRODF. Let U = U .I:그 f(V?) 
φ ~Eφ “ 

as g lVen m From Iyahan [2 [, we know that 
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U is a neighbourhood in the *-inductive limit topology η. Since the order-convex 

hull [U] of U is a neighbourhood in the finest order-convx topology coarser 

than η， it follows [U] is a τneighbourhood. Similarly, the second part of the 

theorem follows from the corresponding part of proposition 2.2 of [2]. 

Since the • inductive limit of a sequence of locally convex spaces is locally 

convex, and thè order-convex hull of a convex set is o-convex (see Kist [3]). 

we have the following: 

COROLLARY 3.6. The o~-z'ndμctz':νe lz'mz't o[ a sequence o[ locally o-convex spaces, 

is locally O-C01Zvex , and tkus coincz'des zoz'th the o-inductz've lz'mz't. (See Kist [3]). 

4. O-uItrabornologicaI spaces 

DEFINITION 4. 1. A locally order-convex space E is called order-ultrabornological 
(o-ultraborflological) if every bounded positive linear mapping from E into any 

locally order-convex space is continuous. 

We conjecture that the attributes of ultrabornological and o-ultrabornological 
are distinct ,yhen applied to the class of locally order-convex space. But we are 

unable to substantiate this. AIso, at present, we do not know whether an 

o-bornological space as deIined by Kist [3], is o-ultrabornological ot not. 

Howeγer， . the class. of o-ultrabornological space is non-empty, as it contains 
metrisable locally order-convex spaces. 1n particular, if the topology 't'. of a 
partial157 ordered topo1ogical vector space (E. C) is given by a single monotone 

F-semi-norm , then (E, C, 't') is o-ultrabornologica1. 

The following concept is important in the study of o-ultrabornological space. 

DEFINITION 4. 2. A su bset B of a partially ordered topological vector space 

(E, C, .) is called a bornivorous o-suprabarrel if B is a balanced, bornivorous, 

order""convex 

bornivorous, 

for %=1, 2----

sUDset of E and if there exists a sequence (B싸 of balanced. 

order-convex subsets of E such that B, +B,CB and B , , +B. , ,CB l' ...... 1'-...... u. ............. ...... 1Z +1 I ...... n+ 
‘ 

The next theorem gives the connection between o-ultrabornological spaces 
and bornivorous o-suprabarrel subsets. 

THEOREM 4.3. Let.1 be a locally-order-co12vex topology 012 a partially ordered 

νector space (E, C). The12 

1. The f，αηzily o[ all bornivorous o-suprabarrels z'n (E, C, 't'1) is a base o[ 

nez'ghbourhoods o[ 0 101' a [iner locally order-convex topology 't'? on E. 
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2. The topologies 't'l and 't'2 have the same bounded subsets. 
3. The space (E. C. 't'l) is 0-μ!trabornological i[ and only zl 't'l ='t'2' 

4. and thz"s is so. zl and only i[ every bornz'vorous o-suprabarre! 쩌 (E. 't' 1) is a 
1:1-neighbourhood O[ origin. 

The proofs are straightforward. 

With some simple modifications of the proofs of proposition 4.1 and Theorem 

4.1 of Iyahen [2]. we obtain the following analogues. 

PROPOSITION 4.4. A set o[ positive !inear maPPings [orm an 0-μ!traborno!ogical 

space into a locally order-convex space is eqμicontz'nμous provided that it is 

Unllorm!y bounded on bounded sets. 

THEOREM 4.5. Any o-1c-inductive limzï o[ o-ultrabornologica! spaces is 0-

-ul trabornol 0 gical. 

By some easy calculations. we can prove the following corollaries of Theorem 
4.5. 

COROLLARY 4.6. I[ F is a closed subspace o[ an o-ultrabornological space E. 
ihen E/F is o-ultrabornological. 

COROLLARY 4.7. I[ [ is a contz'nuous. open. positive linear mapping o[ an 

()ultrabornological space E onto a locally order-convex space F. then F z's 0-

ul trabornol 0 gical. 

COROLLARY 4.8. Any countable o-indμctive limit o[ locally o-conνex 0-μltr

abornological spaces z's o-ultrabornological. 

DEFINITION 4.9. A subset A of a linear space is called semi-convex if there is 

some i/.늘o for which A + AC i/.A. 

DEFINITION 4.10. We say that a partially ordered topological vector space is 

almost order-convex if every bounded subset is contained in some bounded set 

which is closed. balanced. semi-convex and order-convex. 
ι ~ 

、

‘ 

Clearly every locally o-convex space is almost order-convex and so is any 

partially ordered topological vector space whose topology is given by a bounded. 

order-convex neighbourhood of the origin. 

The next theorem. an analogue of proposition 6.3 (e) of Kist [3]. is a partial 
converse of theorem 4.5. 

THEOREM 4.11. Let (E. C. 't') be an almost order-convex o-ultraborno!ogical 
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space, and let 3( be the class 01 all closed, bounded, semz"-convex, balanced, an '1:l 

order-convex subsets 01 E. For each Bε3(， let EB be the linear subspace generated 

by B. Then 
1. EB z"s a partz"ally ordered νector space. 

2. There exists a p-normed, locally order-conνex topology 7:B on EB' lor a 

suitable O<P<1. 

3. (E, C, .. ) is the 0→-indμctz"ve lz"ηzit 01 (E B' .. B) (Bε3() μ，Uh respect to the 

inclμsion mappings (i B)' 

PROOF. 1. Take cB=cnEB as the positive cone of EB• 

2. Since B is balanced and semi-convex, there exists a λ는2 such that B+ 

BζÀB. Put P=log2/logÀ and for xεEB' define νB(x)=inf(! λlP : xεÀB). It is 

easy to check that νB is a p-norm on E B' The topology .. B given by νB， is 

the required topology. 

3. Let U be a .. -neighbourhood of 0 in E. Then for each Bε3(， ÀBCU for 

some λ>0 implying ÀBCUnEB' So iB : (EB, "B)-• (E, .. ) is continuous for each 

BE3(. Moreover, let "0 be any 10calIy order-convex topology on E for which 

each 상 is continuous. Then it is not difficult to show that "0 coincides with 7: 

as (E, .. ) is almost order-convex o-ultrabornologicaI. This completes the proof. 

• 
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