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LOCALLY ORDER-CONVEX SPACES.

By V. Murali

0. Abstract

The first part of this note is concerned with a neighbourhood base
characterisation of locally order-convex spaces. The notions of order*-inductive

limits and order ultrabornologicity in the class of locally order-convex spaces
are introduced and studied in the latter part. These are the non-convex

generalisatioﬁ of o-inductive limits and o-bornological spaces.

1. Introduction

A locally order-convex space is a partially ordered vector space together with
a linear topology for which there exists a base of neighbourhoods of the origin
consisting of order-convex and balanced subsets. Kist [3] studied locally o-convex
(order-convex and convex) spaces. Iyahen [2] developed concepts of *-inductive
limits and ultrabornological spaces in the general topological vector spaces
setting. The objects of this note are to define and give some results on order

*-inductive limits and on order ultrabornological properties of locally order-
convex spaces, using analogous techniques of Iyahen [2] (thus generalising the

results of Kist [3]).
In section 2, we define an analogue of a suprabarrel in a topological vector
space and use it to prove some basic results on locally order-convex spaces.

Section 3 is devoted to the results on the finest locally order-convex topologies

making certain positive linear mappings continuous (that is, order *-inductive
limits) and on the finest locally order-convex topologies on a partially ordered

vector spaces. In the last section, we study those locally order-convex spaces E
which have the property that every positive linear mapping of E with range

in any locally order-convex space is continuous.
Regarding the theory of topological vector spaces we refer to Horvath [1] and
for those undefined order-theoretic terms we refer to Schaefer [5].

2. Locally order-convex spaces

DEFINITION 2.1. A subset U of a partially ordered vector space (E,C) is called
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an order-convex suprabarvel (hereafter abbreviated to o-suprabarrel) if U is
balanced, absorbent and order-convex and, if there exists a sequence (U ) of
balanced, absorbent and order-convex subsets of E such that U,+U,C U and
U,.,tU, . ,CU, forall » If, in addition, U is closed we call it an order-convex
wltrabarrel (o-ulvabarrel). We call (Un)(n=1,2---) a defining sequence for U.

[t is immediate that balanced, absorbent, o-convex subsets of a partially
ordered vector space (E,C) are o-suprabarrels. However, an o-suprabarrel need
not be o-convex and need not have a defining sequence of o-convex sets.
Intersection of a finite number of o-suprabarrels is an‘o—suprabarrel. If U isa
suprabarrel in (E,C), then [U], the order-convex hull of U is an o-suprabarrel.
The inverse image of an o-suprabarrel by a positive linear mépping 1S an
o-sunrabarrel. The image of an o-suprabarrel by a positive linear mapping 1s
an o-suprabarrel provided the mapping is onto.

DEFINITION 2.2. An F-semi-norm vy on a partially ordered vector space (E,C)
is called monotone if v(x)<v(y) whenever 0<2<y in E.
Let U be an o-suprabarrel with a defining sequence (U,) (#=1, 2.:.) in a

| —— ]

partially ordered vector space (E£,C). By the method of construction on page
3 of Wealbroeck [6], we can associate an F-semi-norm y with U, as follows:

v(y)=inf{8 : y&W g, (y&E) where Wz=FE for =1 and Wﬁ-—-t;l' U, for every

7
dvadic rational A= kZi t, 2%, Suppose E has the decomposition property, then

W 5 is order-convex, as it is the sum of order-convex sets U,. Hence yEW 5 and
0=x<y imply x&W 5 That 1s, v(*)=<v(y) whenever 0=<x=<y.
Thus an F-semi-norm associated with an o-suprabarrel is monotone provided

E has the decomposition property.

DEFINITION 2.3. (Wong and Ng [7]) A linear topology 7 on a partially
ordered vector space (&,C) 15 said to be locelly order-convex if it admits a

neighbourhood base at 0 consisting of order-convex sets; in this case, we shall
say (B,C,7) is a locally order-convex space.

REMARK. Locally order-convex topologies were first considered by Namioka.
[4] . He called these topologies locally full.

The following proposition gives an useful characterisation of a neighbourhood
base at the origin in a locally order-convex space. g

PROPOSITION 2.4. In a locally order-convex space, there exists a base of
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pelghbourhoods at origin ceunsisting of o-suprabarrvels; Conversely, let (E,C) be a
partially ordered vector space and let % be a filter base at the orvigim consisting
of o-suprabarrels with theiv defining sequences. Then there exists a unique veclor

lopology T on E for which E is a locally order-convex space and for which Z 1is
a base of t-neighbourhoods at the origin.

Proof is straightforward.

COROLLARY 2.5. Thrhe 'bolfectz'on of all o-supragbarrels in a pczrtz’aﬂy Ofdé?ed..

vector space (E,C) is a nez'gkbbwkood base for the finest locally order-convex:
topology on E.

For certain class of partially ordered topological vector spaces, the notion of

locally order-convexity is equivalent to a condition in terms of continuons.
F-semi-norms. We shall make this precise in the next theorem, but first we

require a lemma due to Namioka [4, p.19].

L

CMMA 2.6, Let (E,C,t) be a partially ordered topological vector space. Ther:

the following are ecuivalent.

1. The space (E,C, 1) is locally order-convex:

2. Given a t-neighbournood U of zero, lneve exists a t-neighbourhood V of zero

such that 0<x<y for some vy in V imbdlies x&U.

THEOR:

M 2.7. Let (E,C, 1) be a partially ordered topological vector space with:

decomposition property. Then the following statements are equivalent.

r

1. T s a locally order-convex lopology.

2. The family of all t-continuous monotone F-semi-norms determines the topology

PROOF. (1D=(2). Let {v,} (?&I) be the family of all z-continuous monotone

F-semi-norms, and 7' be the topology generated by {v} (G&I). It is easy

to see that 7' 1s coarser than 7.

We now show that 7 is coarser than 7’. Let

U be a balanced z-neighbourhood of the origin. Since 7 is locally orderconvex,
there exists an o-suprabarrel V contained in U. By the remark preceding

definition 2.3, the F-semi-norm Yy of V,
Also,

is T-continuous and monotone.
x€EL v, (x)<JCVCU iso U is a 7’'-neighbourhood, as required.

(2)=>(1). Let U be a t-neighbourhood of 0. Then there exists a finite

number {ui} (=1, 2, *--, 12) of monotone F-semi-norms such that V={x

o D 1}132136; v,(x)<e:0<e<1}CU. V satisfies the property (2) of Lemma 2.6 .
1 =1,2, 0 22
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and so (£,C, 1) is locally order-convex,

It is useful to note that there is a method available, for constructing locally
order-covex topologies from vector topologies on partially ordered vector spaces.
We shall not describe it here but refer to (7, p.56).

We conclude this section with a remark on the finest locally order-convex
topology. Let e be an order-unit in a partially ordered vector space (E,C).

Then the set [—e, e] is balanced, convex, and absorbing. Hence the Minkowski
functional v, of [—e,e] is a semi-norm on E. Kist in (3] observed that the
topology 7, induced by v, on E is the finest locally o-convex topology. We claim
that 7, coincides with the finest locally order-convex topology 7 on E : in fact,
if V' is any balanced order-convex z-neighbourhood of the origin in E, then V

is absorbing. So there exists a A>0 such that Ae€V, implying A[—e,elCV
Hence V is a t-neighbourhood.

3. Order *-inductive limits

Let (E,C) be a partially ordered vector space, and (E, C, 7)) a family of
locally order-convex spaces, ({&€I). Let f; be a positive linear mapping from £,
into £ for each 7&I. Then the order *-inductive limit (hereafter abbreviated
to o-*-inductive limit) topology on E with respect to the family ((E,,C,, 7;) i f;)
is defined to be the finest locally order-convex topology on E for which all the
positive linear mapping f;’s are continuous.

PROPOSITION 3.1. 7 always exists on E,

PROOF. Let & be the set of all locally order-convex topologies on E. The
topology n=1{¢, E} is locally order-convex and is the least element of .&. Since
finite intersections of o-suprabarrels is an o-suprabarrel, the supremum of an
arbitrary non-empty family of locally order-convex topologies is again locally
order-convex. Let &£, be the subset of & consisting of those topologies for
which each positive linear mapping f; is continuous. &, is non-empty since

n&¥’,, and the supremum of %, which also belongs to &, is obviously the
required topology.

The space E equipped with the o—-inductive limit topology is called the
o—¥%-inductive limit. |

We observe that the o—-inductive limit topology on E is a linear topology,
and so weaker than the strongest linear topology on E relative to which all
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the f/s are continuous, that is, the linear *-inductive limit topology as defined

in [2, p.286). Thus the two topotlogies coincide if and only if, the linear
+-inductive limit topology on E 1s locally order-convex. At present, we do not
have an example to show that the two topologies are distinct.

PROPOSITION 3.2, Let (E,C,t) ((&€I) be a family of locally order-convex
spaces, For each i€lI, let [, be a positive linear mapping of E; into a pariially
ordered vector space (E,C). Let ' ={U} be the collection of all o-suprabarrels of
E with the property that, for each icI, fz.-l(U), fi_l(Un) (n=1,2-+-) are t,-
neighbourhoods of O in E, where U } is a defining sequence of U. Then Z is

a base of neighbourhoods of O in E for the o-x-itnduclive limit topology with respect
to the locally order-convex spaces {E;} and the positive linear mappings {f}.

PROOF. Clearly, Z forms a base of neighbourhoods of 0 in E for a locally
order-convex topology 7’ on E, by proposition 2.4. If %  is a base of balanced,
order-convex neighbourhoods of 0 for any other locally order-convex topology
7”7 on E for which all the f;'s are continuous, then each W&#” is absorbing,
o-suprabarrel in E. It is straightforward to check that We&%/, and so " CZ
from which it follows that t”C7’. Thus 7’ is the strongest such topology and
therefore 7° is the o-+-inductive limit topology on E.

COROLLARY 3.3. If (F,n) is a locally order-convex space ard if g is a positive
linear mapping of E into F, then g is continuous with respect to the o-x~inductive

dimit topology © on E if and only if, gﬂfi 1s continuous for each i1,

PROOF. If g is continuous, then clearly the mappings gof, are all continuous.
Conversely, suppose g is a positive linear mapping such that gof, is continuous
for each /&€1. Let U, be any balanced order-convex #-neighbourhood of the
origin in F. Choose a sequence of balanced, order-convex 7n-neighbourhoods
(U} (n=1,2...) such that U +U,CU, , (#n=1,2...). Then g "(Uy) is a
'-.Balanced, absorbing o-suprabarrel in F, with a defining sequenée {gﬂl(UH)}
(n=1,2...). Also fz-_l(g‘"l(Un))=(gofz.)_1(Uﬂ) is a 7, neighbournood of 0 in E,
for each /&l and #»=0,1,2... Thus, by proposition 2.3, g_l(UO) is a -
neighbourhood of 0 in £ and so g is continuous.

Let (E,C) be a partially ordered vector space. For each ¢€E with ¢=0, let

E =\ {x: x€E, —ta<zx<ta}
{ERT '
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C,=E_NC.
Then £, is a subspace and a is an order-unit for (£, C ). Let 7, be the locally-

order-convex topology on E, induced by the semi-norm v, of [—a,aq] in E,..
Than we have the following analogue of proposition 5.2 [3].

THECOREM 3.4, Let (E,C,1) be alocally order-convex space. Then 7T is the finest
order-convex topology on E if and only if (E,C,7) is the o-¥-tnductive limit of
(£,C .7, for a=E, with respect to inclusion mappings ¢ -

PROOF. Necessity. Let V be any balanced, order-convex t-neighbourhood of
0 in (£,C). Then V is an o-suprabarrel with a defining sequence (V,) (#=1,.
2--+), say. The sets VNE , V, NE, for each e&E, »=1,2---, are balanced,
order-convex and absorbing. Moreover V. NE +V NECV, 6  NE (#=2,3:), and
VINE AV, NE CVNE, for each a=E. That is VNE, is an o-suprabarrel in E
for each ¢&E. Since 7, is the finest locally order-convex topology in £, VNE,,
V,NE,6 are 7 _-neighbourhoods of origin in E,. Hence V is an o—-inductive:
limit neighbournood, by proposition 3.2

Sufficiency. Let V be any o-suprabarrel in (&, C), with a defining sequence:
(V). Then it is obvious that z'a_l(V)=VﬂEa, (fa—l(V,z)=VﬂﬂEa(ﬂ=l, 2:--)) is.
an o-suprabarrel in E_ foJr a=F, and so a 7, neighbourhood in £, Also for
each »=1,2---, V. NE, is an o-suprabarrel in £, and hence a 7 neighbourhood.

The proposition 3.2, now implies V is a neighbourhood in the order *-inductive:
limit topology. Thereiore, the order *-inductive limit topology coincides with
the finest order-convex topology by Corollary 2.5.

We conclude this section with an useful analogue of proposition 2.2 of [2].

THEOREM 3.5. Let (E,C,t) be the order *—inductive limit of a family of locally
order-convex spaces (E,, C,t,) ((&I) with respect to positive linear mappings (f;)-
For each i1, let V, be a balanced, order-convex rz.-nez'gkbourkaod of Oin E;, and.
[et U be the O?dgr-cmwex null of %)J a_(_EZ'Q?, f,(V,) the union being taken over all finite

subsets © of I. Then U is a t-neighbourhood of o in E.
If I is countable, then as V, runs through a base of balanced, order-convex

t,-neighbourhoods of 0 in E,, the order-convex hull of the above sets form a base
of T-neighbourhoods of 0 in E.

PROOF. Let U=%)J _Z’(p f;(V,) as given in From Iyahan [2[, we know that
1=
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U is a neighbourhood in the *-inductive limit topology ». Since the order-convex
hull [U] of U is a nelghbomhood in the finest order-convx topol()ﬂ'y coarser
than », it follows [U] is a t-neighbourhood. Similarly, the second part of the
theorem follows from the corresponding part of proposition 2.2 of [2]. |

Since the %-inductive limit of a sequence of locally convex spaces is locally
conveX, and the order-convex hull of a convex set is o¢-convex (see Kist [3]),

we have the following:

COROLLARY 3.6. The o—x-tnductive lim:it of a sequence of locally o-convex spaces,
is locally o-convex, and thus coincides with the o-inductive limit. (See Kist [3]).

4. O-ultraborneclegical spaces

DEFINITION 4.1. A locally order-convex space E is called order-ultrabornological
(o-ultrabornological) if every bounded positive linear mapping from £ into any

locally order-convex space is contifiuous.

We conjecture that the attributes of ultrabornological and o-ultrabornological
are distinct when applied to the class of locally order-convex space. But we are
unable to substantiate this. Also, at present, we do not know whether an
o-bornological space as” defined by Kist [3], is o¢-ultrabornological or not.

However,'. the class.of o-ultrabornological space is non-empty, as it contains
metrisable locally order-convex spaces. In particular, if the topology 7-of a
partially ordered topological vector space (E.C) is given by a single monotone
F-semi-norm, then (E,C, 'E:) is o-ultrabornological. | |

The following concept is important in the study of o-ultrabornological space.

DEFINITION 4.2. A subset B of a partially ordered topological vector space
(E, C, 7) i1s called a borrivorous o-sutrabarrel if B is a balanced, bornivorous,
order-convex stibset of £ and if there exists a sequence (B,) of balanced,

bornivorous, order-convex subsets of £ such that BI+BICB and Ble +1+Bﬂ +1CB
for n=1, 2---. ‘ |

The next theorem gives the connection between o-ultrabornological spaces
and bornivorous o-suprabarrel subsets.

THEOREM 4.3. Let 7, be a locally-order-convex topology on a partially ordered

vector spaece (E,C). Then
1. The family of all bomworous o-suprabarrels 1w (E,C,T,) is a base of

netghbourhoods of 0 for a finer locally order-convex topology t, on E.
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2. The topologies t, and t, have the same bounded subsels.

3. The space (E,C,1,) is o-ultrabornological if and only if 7,=1,.

4. and this is so, if and only if every bornivorous o-suprabarrel in (E, ) is a
T -neighbourhood of origin.

The proofs are straightforward.

With some simple modifications of the proofs of proposition 4.1 and Theorem
4.1 of Iyahen [2], we obtain the following analogues.

PROPOSITION 4.4. A sel of positive linear mappings form an o-ulirabornological
space into a locally order-convex space ts equiconiinuous provided thal it i&s
uniformly bounded on bounded sets.

THEOREM 4.5. Any o——inductive limit of o-ulirabornological spaces is o-
ultrabornological.

By some easy calculations, we can prove the following corollaries of Theorem
4. 5.

COROLLARY 4.6. If F is a closed subspace of an o-ultrabornological space E,
then E/F is o-ultrabornological.

COROLLARY 4.7. If f is a continuous, open, positive linear mapping of an
oultrabornological space E onto a locally order-comvex space F, then F is o-
ultrabornological.

COROLLARY 4.8. Any countable o-inductive limit of locally o-convex o-ultr-
abornological spaces is o-ultrabormnological.

DEFINITION 4.9. A subset A of a linear space is called semi-convex if there is
some A>0 for which A+ ACRA.

DEFINITION 4.10. We say that a partially ordered topological vector space is
almost order-convex if every bounded subset is contained in some bounded set
which is closed, balanced, semi-convex and order-convex.

Clearly every locally o-convex space is almost order-convex and so is any
partially ordered topological vector space whose topology is given by a bounded,
order-convex neighbourhood of the origin.

The next theorem, an analogue of proposition 6.3 (e) of Kist [3], is a partial
converse of theorem 4.5.

THEOREM 4.11. Let (E, C, ©) be an almost order-convex o-ultrabornological
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space, and let % be the class of all closed, bounded, semi-convex, balanced, an¥
order-convex subsels of E. For each BEZ, let Ey be the linear subspace generated

by B. Then
1. Egis a partially ordered veclor sbace.

2. There exists a p-normed, locally order-convex topology Tty on Eg for a
suitable 0 <p<l,
3. (B, C, 1) is the o—x—inductive limit of (Egt5) (BEZ') with respect to the

inclusion mappings (ig).

PROCF. 1. Take Cz=Cf1E, as the positive cone of E,.

2. Since B is balanced and semi-convex, there exists a A2>2 such that B--
BCAB. Put p=log2/logd and for x&EFE,, define uB(x)——-inf(IZlP rx&EAB)., It s |
easy to check that vp is a p-norm on Z, The topology 7, given by v, is
the required topology.

3. Let U be a 7-neighbourhood of 0 in £, Then for each B&EZ, ABCU for
some A>0 implying ABCUNEZ So igz: (Eg t,)—(E, ) is continuous for each
B&% . Moreover, let 7, be any locally order-convex topology on E for which
each 7, is continuous. Then it is not difficult to show that 7, coincides with 7
as (£, 7) 1s almost order-convex o-ultrabornological. This completes the proof.

Department of Pure Mathematics,

University College of Wales, Aberystwyth,
Wales, U. K.

REFERENCES

[1] J. Horvath, Topological vector spaces and distributions, Addison Wesley Pub. Co.,

Reading, Mass., 1966,
[2] S.O. Iyahen, On certain classes of linear topological spaces, Proc. London Math.

Soc., (3), 18, (1968), 285—307.

[3] J. Kist, Locally o-convex spaces, Duke. Math. J., 25, (1958), 569—582.

4] 1. Namioka, Partially ordered topological vector spaces, Mem. Amer. Math. Soc.,
24, (1957).




46 V. Murali

I5] H.H. Schaefer, Topological vector spaces, Macmillan, New York, (1966).

{6] L. Waelbroeck, Topological vector spaces and algebras, Springer-Verlag, Lecture
notes in Maths, 230, (1971). o
[7] Y. Wong and K. Ng, Partially ordered topological vector spaces, Oxford Math.

Monographs, (1973).



