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LOWER FORMATION RADICAL FOR NEAR RINGS
-By P.K. Saxena and M. C. Bhandari

0. Abstract

In [7] Scott has defined C-formation radical for a class C of near rings and’
has studied its porperties under chain conditions. A natural question that arises-
is: Does there exist a Lower C-Formation radical class L{(M) containing a given:
class M of ideals of near rings in C? In this paper we answer this by giving:
two constructions for L(M) and prove that prime radical is hereditary.

1. Introduction

Analogous to rings various type of radicals of near rings and their properties:
have been studied by many people namely Vander Walt, Biedleman, Laxton
Ramakotaiah etc. In developing general radical theory for near rings, the-
problem is due to the fact that an elementwise characterization of an ideal
generated by a subset is not known. Results of ring theory using ideals and’
homomorphisms follow easily but other usual fundamental properties that hold’
for associative rings, no longer hold for near rings. For example, for a radical
property P (in the sense of [5,p.3]) and an ideal I of a near ring N, P(I)»
need not be contained in P(N). In [7] S.D. Scott has started an alternate-
general radical theoretic approach by defining a C-formation radical for a class-
C of near rings. Scott has shown that Baer lower radical gives rise to a:
C-formation radical class. In general a radical property need not give rise to a
C-formation radical and vice versa. However if the radical property P is:
hereditary then P={(I, N)|ICP(N) is an ideal of N} becomes a C-formation-
radical class. In section 3 we answer the natural question of the existance of
a lower C-formation radical class L(M) containing a given class M of ideals
of near rings in C. In [4] Levetzki has shown that for rings Baer radical [5]
is equal to the intersection of prime ideals. A similar result is established for-
C-formation radical of a near ring. In section 4 we prove the inheritence of
the hereditary property under lower C-formation radical construction, by giving
another construction of L(M). As a corollary it is proved that lower nil radical.
(here called a prime radical) defined in [2] is hereditary.
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2. Preliminaries

In this paper a near ring means a left near ring satisfying 0-#=0 for all x.
For various definitions and elementary properties of a near ring we refer to
[7]. Let C be a homomorphically closed class of near rings and W be the class
.of all ordered pairs (I, N) where I<AN ([ is an ideal of N) and NEC. A pair
(I,N) is said to be non-zero if I#0. For a subset M of W, I is called an
M-i1deal of (I, N)eM. A pair (J,N) in W is said to be an ideal of (I, NEW

(denoted by (J, N)<(I,N)) if JCI. The following closure operations on M are
‘Introduced in [7].

DEFINITION 2.1. A subset M of W is called S,-closed, Q-closed, E-closed or
G-closed aécording as M=S,M, M=QM, M=EM or M=GM respectively where-

(1D SM={(J,N)I(],NDX(,N) for some pair (I, N) in M};

(2) QM={(I6,NO)|(I, NYEM and 6 is a homomorphism of N};

3) EM={{,N)|({/],N/J) and (J,N) are in M foxj some J<]N};

(4) GM={I/IN], N/INI(T+]D/], N/ DEM for I,] ideals of N in CJ.

It is easy to see that for any subset M of W, M*=S,QM is both S,-closed and
“Q-closed. | |

DEFINITION 2.2.- A subset P of W is said to be a C-formation radical class
if it satisfies:

(5) PZSleQP;GP;

(6) every NEC contains a unique maximal P-ideal P(N);

(7) (N/P(N), N/P(N))ESP for all NEC where

(8) SP={(I,N)&eW | (I,N) has no non-zero ideal in P}.

For a universal class C, if P is a radical class in C in the sense of [5,p, 3],
‘then P={{{,N)|I<{N,N&C and ICP(N)} has all the properties of definition
2.2 except possibly P=GP. But if P is a hereditary radical class (P(N)=N —>
P(I)=I for all 7<{N,N&C) then P is a C-formation radical class. Also, a
.C-formation radical class need not give rise to a C-radical.

In the rest of our discussion we assume that any class MCW contains the
pairs (0, N) for all NEC. Moreover any two pairs ([, N) and (I', N’) are

identical if .N and N’ are isomorphic and I is isomorphic to I’ under the
restriction map.

3. Lower C-formation radical

For the construction of lower C-formation radical class containing the given
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class M(CW) we need the following characterization based on [5, Thm. 1].
THEOREM 3.1. A subclass P of W is a C-formcztz‘on radical class if and only
if it satisfies properties (5) and |

(9) For any (I, NDEW if (I, N)EP then there exisls a homomorphism 0 of N
with 10#(0) such that (I6, NO)ESP. | |

PROOF. It suffices to show the sufficiency part. Let J be the sum of all P-

ideals of NV and let 6 be any homomorphism of N with J6#0. Then there exists
a P-ideal I of N such that JGZkerf® and hence (76, NO)&SP. But then by (9)
(J,N)eP. For proving (7) let (I/],N/]J)EP for some I<N and let 6 be a
‘homomorphism of N such that 76#0. If JCKer® then (I8, NO)EP; otherwise

JZker® and (J8, NO)EP where 0£J0CI6. Thus (I8, NOESP for any
homomorphism 8 of N. By (9) it follows that (I, N)EP, |

Let MCW. Defline M,=QM, M 1=95,QGM and for any ordinal 5, H 5=SIQGM5
where .
‘(IO):'M 8= {(I , N)| for évéry homomorphism 6 of N with 160, (76, Nﬁ) has
a non-zero ideal in M, for some ordinal a<§}.

THEOREM 3. 2 L(M)= U M is the smallest C-formalion radical class (called

dower Cfarmatzon radzcal defzned by M) contarning M.

PROOF. It is easy to verify that M J-,CM M g for all ordinals a < 3 and that
L(M) satisfies (6). Let (I, N)EW and let @ be a homomorphism of N such
that (I8, N8) has a non-zero iEleal in L(M). But then (I8, NO) has a nonzero
ideal in M_ for some a and so there exists an ordinal v such that (6, N@) has

a non-zero ideal in M for all homomorphism 8 of N with I6#0. Thus (I, N )
€M, +1Cir_.,(M) and so (9) follows., L(M) is minimal such by its construction.

An example of lower C-formation radical comes from the construction of
Baer lower radical in rings [5,p.56]. For N&EC and I<IN define I, to be the
sum of all nilpotent ideals of N contained in I. Suppose [, is defined for all

ordinals a<B. Define I 8= L<J5I , if 8 is a limit ordinal. For a non-limit ordinal
4

B, 1g/I,;_; is the sum of all nilpotent ideals of N/I, ; contained in [/l4_,.

Then B={(I,N)|N&C,I=T , for some ordinal a} is a C-formation radical class,
called the Baer radical [7]. In fact we have the following:

THEOREM 3.3. B s the lower C-formation radical class containing A={(I, N) |
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NEC, I is a m’lﬁotém‘ ideal of N}.

PROOF. Clearly ACB and so L(A)CB. It suffices to prove that SL(A) C SB:
as for any two C-formation radical classes P; and P,, P, C P, if and only if
SP,CSP,. Consider (I, N)&SL(A) and 07#(J, N)<(I, N). Then (J, N)ESL(A)
and hence if K<|N with KCJ then K is not nilpotent. Therefore J =0 for all:
ordinals a. This shows that (/, N)&B and hence (I, N)&SB.

The intersection of prime ideals of a ring was first considered by N.H..
McCoy and only later did Levitzki show that this was equal to the Baer lower-
radical [4]. We motivate to prove a similar result here. The concept of prime-
ideals and lower nil radical was generalized to near rings by Vander Walt in:
[2]. By observing that “an ideal I of N is prime if and only if for all ideals:
J;of N.J,-J,-J CI implies J.CI for some 77, it is easily seen that 1(N)=M.
{prime ideals of N} =) {Qz.IN /Qz. has no non-zero nilpotent ideal} even in near-
rings. Thus 1(N)CB(N). Let I be any ideal of N and /s as defined earlier..
It is clear that I 1Cl(N).. Assume that for a given ordinal 5, I C I(Nj for all!

a<B. In case 8 is a limit ordinal [/ 5= LZJBI aCl(N), otherwise [ 8 1S the sum of
(4

all ideals J of N, such that IDJDI;_; and ]kCI g_1 C1(NV) for some positive:

integer 2. Thus J and hence I is contained in 1(&¥). Hence by transfinite-
induction we have proved:

THEOREM 3.4. B(N)=1(N)=N{prime ideals of N} for all N&C.

As an easy consequence we have the following:

COROLLARY 3.5. The class P={(I, N)IN&C, ICI(N)} is the lower C-formation:

radical class containing the class A={(I, N)INEC and I is a nilpolent ideal of
N}.

In associative rings [5,p.125] a radical class P is hereditary if and only if-
P(RONICPI) for all R in the universal class and I<]R. In view of this, define:
a class NCW to be hereditary if M=HM where

Ay HM={,U)|(I,N)eM, UeC and ICULN]}. |
It is easy to verify that a C-formation radical class P is hereditary if and only-
if PIN)NICP(I) for all I<AIN, N&C. Here onward we shall assume that C is:
homomorphically closed as well as hereditary though the work can be carried"

over non-hereditary class C also. In that case one has to consider C-ideals of
N only.
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4, Another construction for L(M) @

In case of associative rings, the hereditary property is inherited under lower
radical construction [1], [6]. The inheritence of hereditary property under
lower C-formation radical construction follows under some additional conditions.

THEOREM 4.1. Let M be a Sl-clased and Q-closed subclass of W. If M is
hereditary then so is L(M).

Before we give another construction for L(M) and prove the required lemmas:

thereafter for the proof of this theorem, we need following two extensions of
theorems in [6].

| THEOREM 4.2. A subclass P of W is a C-formalion radical class if and only
if P is E-closed and satisfies (5) and

(12) For any chain {I n}nEf' of P-ideals of N, U I , i a P-ideal of N.
_ , | n

PROOF. We only need to show ‘if part’ as ‘only if part’ follows easily from:
[7]. For any NEC, by Zorn’s lemma N has a maximal ideal J(say) such that.

(J,N)eP, If /=N we are done. So let J#N and let (I, N)&P such that IZ].
Then ((I+])/],N/J)&EP and hence ((I+]), N)EP violating the maximality of

J. Therefore J contains every P-ideal of N and (6) follows. The proof of (7)
is immediate. “

For any class MCW, define DM={(I, N)|I= U I for some chain {1} _r

ot M-ideals of N} and FM=S,QGM. Obviously M CDM MCFM and MCEM..
The proof of following theorem follows as [6].

THEOREM 4.3. A subclass P of W is a C-formation radical class if and only
if P=EP=DP=FP,

For a given class M(CW) define M 1*=QM and for any ordinal 8
EFM,_* if 8 is not a limit ordinal;

D( L%BFM J¥) if B is a limit ordinal.
- 4 4

It is easy to verify that M *CFM *CM ﬁ* and FM* is S,-closed as well as
Q-closed for all ordinals a¢<B. Using theorem 4.3 we get

THEOREM 4.4, L*(M)= ‘LBJ FMg* is a C-formation radical class and L*(M)=
L(M). . ¢
We note that if M is hereditary then so are QM,.EM and DM. The following

(13) M *=
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lemma gives information about FM to justify the inheritence of hereditary
property.

LEMMA 4.5. For a S,-closed subclass M of W, FM is G-closed.

.PROOF. We first note that FM={(K/], N/DI(K/], N/D<{I+])/], N/J)
where INUCT and ((I4-U)/U, N/U)EM for some ideals 7,U and J of N}. It is
easy to verify that if (K/J, N/J)<((T+])/], N/J) then there exists an ideal
V of N contained in I such that K//=(V+J)/]. Now let K be an ideal of N
such that ((K+J)/J,N/J) is in FM. Then there exist ideals / and U of N such
that KCI,INUC], ((K+])/], N/])g((l+])/j,N/]) and (([+U)/U, N/U)EM.
But then ((K+U)/U,N/U)&EM and so ((K+V)/V, N/V)EFM for all ideals V of
N with KONUCV. Since INUC], KﬂUCKﬂ] and hence (K/KN/, N/Kﬂ])e
FM. This completes the proof. -

LEMMA" 4.6. If a subclass M of W is Sl closed rm'd Q-closed then FM is here-
ditary whenever M is so. |

PROOF. Consider (I, NEFM and I CU <N. Then there exist N’ inC, I’, J’,
K7, U’ ideals of N” such that (I,'N)# ((K’—I—U’)/U’,'_N’/U')S((I’+U’)/U’, N'/U’),
I'NJ’CU’ and ((I'+]D/]'. N /T EM. Thus N=N'/U" (up to isomorphism).ﬁ
Since UN we have U=V’/U’ for some V'<N’. But M is hereditary and so
'+, V+I'+])/J)&EM. Also since M=S M=QM=HM a careful check
shows that ((K'+(J'OV )/ 'OV’, V/]I'NV)EM. Therefore (K'/K'N]' NV,
V/K'NJ'NV)EFM where K'NJ' NV =K'NJ'CI'NYJ'CU’. But FM is Q-closed |
hence ((K’+U)/U, V' /U )=, U)eFM.

LEMMA 4.7. For any class M(CW) and any ordinal o, M *=S M *=QM *.

PROOF. Let £ be a limit ordinal. Consider (J, N)<({I,N) where (I, N)&M * g

Then I= UFI where {7} = is a chain of ideals of & such that (/ ,N)EFM  *
ne .

for some a,<f. Thus J= U {I N J} where (I, \J},=r 1s & chain. Moreover,

by hypothesis of transflmte mductlon .NJ, N )EFM * which shows that (J,
N)EM 5*. Also if @ is a homomorphism of N then FM o= QFM a,,* implies
(1,0, Nﬁ)EFMm% and [ 5:H(LEJF I 6. Again by induction (10, NOOEM .

On the other hand if B is not a limit ordinal, (J, N)<({I,N) where (I, N)&
M g* then there exists (K, N)<(I, N) such that (I/K, N/K) and (K, N) are
in FM, *. But then ((J+K)/K, N/K) and (JNK, N) are in FM4_,*. By

1
Lemma 4.5, (J/KNJ,N/KNJ)EFM,_;* and so (J, N)EM . If @ is a homo-
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morphism of N with U=Ker 6 then (I+U)/K+U, N/K+U) EFMﬁ_l* by

induetion hypotheses. Hence (I6/K0, NO/K6) and (KO, N@) are in FMg *

1
claiming that (I, NO)EEFM g =M 5*.

The proof of theorem 4.1 follows by using transfinite induction and Lemmas
4.6 and 4.7. |

COROLLARY 4.8. Prime radical is hereditary.

PROOF. Since the class A= {(I, N)|I is nilpotent} is S;-closed, Q-closed and
hereditary, the class B=L(A) is hereditary. Theorem 3.4 completes the proof.
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