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, 1. Introductión 

SWIP LOOPS AND GROUPOIDS 

By B. L. Sharma 

According to Professor Osborn [51 , a loop Q(.) with identity e is called a 

loop with WIP (weak inverse property) if whenever three elements x , y, Z of 

~ satisfy the rdation xy.z=e, they also satisfy the relation x'yz=e. Let p and 

A. denote the right inveise operator and left inverse operator respectively. Then 

'eithúofthe properties y.(xy)P=xP or (xy)λ 'x=yλ is equivalent to the above 

.definition of W 1 P loops. For algebraic properties of W 1 P loops see [1] and [51. 

In the present paper is considered a special class of WIP loops, in which the 

:relation 
‘ 

(1) xλ=xP=x- 1 (say) 

‘:also holds and call them SW 1 P (special weak in verse property) loops. (1) aIso 

lmplies the relation 

(2) (x 1)-1=x. 

‘ 、 The object of thispaper is to give a characterization of the variety of SWIP 

loops as a subvariety of groupoids with a single identity. Similar theorems for 

'CWIP (commutative weak inverse property) loop are also proved. Examples of 

finite SW 1 P loops and CW 1 P loops are given. These theorems are the generaliz

:ation of the results due to Higman and Neumann [4], Padmanabhan [71 , Sharma 
[2, 3] ahd Kannapp뻐 [6] for groups, abelian groups, . inverse Ioops, commut-

.ative inverse property loops, crossed.inverse loops and W 1 P loops respectively. 

2. We say that a groupoid Q(.) is an iso-SW 1 P loop ptovided that there is a 
.sW 1 P loop Q(.) which is a princiþal isotope of Q(.) such that (.) and ( 0 ) are 

-connected by either of the relations 

(3) 
f、

(4) 

-1 x'y=xoy 
,.. 1 

x.y=x oy 

for a lI x, y E Q or 

for alI x, y εQ. 

3. THEOREM 1. A groupoz'd Q(.) is an z'so-SW 1 P lOlψ if and . only if the 

idenft'ty 

(5) 

ι 

y=(uμ) • [(x' (tt)) • (yx) • (vv))] 
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holds for all x, y, U, v, t ε Q. 
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PROOF. Suppose the groupoid Q(.) satisfies the identity (5). First of all we 
show that (.) is right cancelIative. Let r'a=s'a for some a εQ. Taking x=a 

and y=r in (5) , we get 

r=(μμ). [(a. (tt)). (ra).(vv))] =(μu). [(a.(tt)). ((sa). (vv)] =s. 

Thus (.) is right cancellative. Keeping x, y , v, t the same and .. changing μ to 

ι in (5) and using the right cancellative property, we have 

(6) μμ=μμ=contant=e (say), for all μ， μ ε Q. 

On using (6) in (5) , 

(7) y=e' [(xe).(yx.e)] for all x, yE Q. 

In (7), y=e gives, by repeated use of (6) and the right cancellativity of (')Þ. 

(8) 

On using (8) in (7), 
(9) 

x=e'x for all x E Q. 

it gíves 

y=(xe)'(yx'e) for all x, y εQ. 

Putting y=x in (9) and using (6) , we have 

(10) x=(xe)'e for all x ε Q. 

Let a.γ =a's. Setting y=a, x=r and y=a, x=s in (9), we get 

(re). (ar.e) = (se). (as'e) , 

from which and the right cancelIativity of (.), we get left cancellativity of ('). 

Further we define the operation (0) as follows. 

(11) x oy=x-1.y fora lI x, yEQ and 

(12) 

AIso 

(13) 

x-1=x.e for all x ε Q. 

(X-1)-1=(x.e)-1=(xe).e=x by (10). 

(X-1)-1=X for all x E Q. 

On using (13) in (11), it gives 

(14) 

Further 

and 

x-1oy=x.y for all x, y ε Q. 

x oe=x-1'e=(xe)'e=e by (10) 

eox=e'x=x by (8). 

Thus 

Thus e is the identity of Q(o). The equations a'x=b and y.a=b have unique 

solutions in the groupoid Q(.). Thus, from (11) it follows that the equations 

aox=b and yoa=b have unique solutions in the system Q(o). 

In view of (8), (12) and (14), the equation (5) can be written 
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(15) 
-1. , -1 /-1 y-<=x-<.(y-<.x)-.=xo(y-•• x)-. by (11) 

=x。(y。x)--l by (11). 

Thus we have proved that Q(o) is a SWIP loop. In other words Q(.) is an 

iso-SW 1 P loop. 

Con versely, let Q(.) be an iso-SW 1 P loop and let Q( 0) be the corresponding 

SW 1 P loop with identity e such that (.) and (0) are connected by 

(11) x。y=x-1·y for a1l x, y ε Q. 

Since SWIP loop Q(o)satisfies (2), thus from (11), we get 

(14) X -loy=x. y for all x, y ε Q. 

Putting y=e in (14), it gives 

(12) X -1 =x' e for all X ε Q. 

Putting x=y in (14), it gives 
(6) x'x=e for all x ε Q. 

Putting x=e in (11) 

(8) y=e' y for all y ε Q. 
We can easily obtain (5) by using (6), (8), (11), (12) and (14). This com

pletes the proof of the theorem. 

REMARK 1. The variety we have characterized can also be obtained from 

the identity 
(16) y= [((vv).(xy)).((tt) .x)] • (ww). 

Let w=w(x1, …, Xn) be some word in the variables x l' "', Xn in the groupoid Q(.). 

THEOREM 2. The groz‘'Þoz"d Q(.) Z"S an z"so-SWIP loop z"n whz"ch the laμ， 

%(x1, ---, Xn)=e 

holds zf and only zf z"t satz"sjz"es the law 
(17) y=((μμ).w). [(x. (tt)). (yx. (vψ)] 

for all x , y , μ， v, t ε Q. 

PROOF. The sufficient part is an easy consequence. of Theorem 1; we need' 

prove only the necessary. part. As in the proof of Theorem 1, here we can 

show that (.) is right cancellative and hence for all κ s ε Q, we have 

(18) (rr).zν =(ss)'w, 

which in turn implies that 

(19) r'r=e (constant) for all r ε Q. 

Now putting x=y=e in (17) and using (19) , we get 



/ 

、

t 

(20) 
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e.ψ=e， 

which by virtue of (19) give e=ψ. 

The .given identity (17) reduces to the identity (5) of Theorem 1 and so the 
:groupoid Q(.) is an iso.SW IP loop, in which the identity w=e is satisfied. 

"This completes the proof of the theorem. 

REMARK 2. The variety we have characterized above can also be obtained 

from the identity 
(21) . y= [((vv).(xy)).((tt) .x)].(w.(μμ)). 

l). In this section we state the correspoeding theorems for CW 1 P loops. The 

’proofs can be constructed by proceeding on thesame Iines as in Theorems 1 

:and 2. 

THEOREM 3. 

(22) 

A groμ~poid Q(.) z's an iso-CWIP loop if dnd onty zÏ the identity 

y=(uμ). [((tt). (y. (zx))). (((rr). (x) • ((ss) • z))] 

.for all x, y, z, U, t, r , s 든 Q. 
/ 

REMARK 3. The variety we have characterized can also be obtained from 
:the identity 

(23) y= [((z.(ss)).(x.(rr))).(((zx).y).(tt))].(μμ). 

THEOREM 4. The grozψoid Q(.) is an iso-CW 1 P loop zOn which the 1 aw 

w(xl' …, xn)=e 

,holds zf and only if tÏ satisfies the law 

(24) y=((μμ). α). [((tt). (y. (zx))). (((rr) .x). ((ss). z))] 

for all x, y, z, μ， t , r , s ε Q. 

REMARK 4. The variety we have characterized can also be obtained from 

~the identity 

(25) y= [((z.(ss)).(x.(rr))).(((xz).y).(tt))].(w.(μμ)). 

6. In this section we give examples of finite SWIP-Ioop and finite-CWIP

、 loop. The loops given by multiplication tables 1 and 2 are SW 1 P-Ioop and 
.CW 1 P-Ioop respectively. 
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Table 1 

e x x2 y y2 y3 xy 
L 

e e x x2 y y2 y3 xy 

x2 x x2 e xy xy2 xy3 I x2y 

x2 χ2 e x x2y2 X2y3 y 
‘ 

y y x2y xy y2 y3 e x2 

y2 y2 xy2 x2y2 y3 e y xy3 

y3 y3 X2y3 xy3 e y y2 x2y2 

xy xy y x2y x xy3 e 

xy2 xy2 x2y2 y2 xy X2y3 

xy3 xy3 y3 X2y3 xy x y2 

1- . x2 - 1 X2y3 1 x2y2 I x2y x2y ‘ xy y x 

x2y2 x2y2 y2 xy2 X2y3 x2 x2y y3 

X2y3 X2y3 xy3 y3 x2y x2 

Table 2 

e y x x2 

e e y x x2 

y y e xy x2y 

x x xy x2 y 

x2 x2 x2y y x 

xy xy x x2y e 

x2y x2y x2 e xy 

a 

xy2 I xy3 I x2y x2y2 X2y3 

xy2 xy3 x2y x2y2 X2y3 

x2y2 X2y3 y y2 y3 

y2 y3 xy I xy2 I xy3 

X2y3 

x 

x2y 

v3 

x2 

y 

xy3 

e 

xy 

x2y2 x 

xy x2 

x2 xy2 xy 

y2 x2 X2y3 

y y3 e 

e x2y2 x2y 

xy2 e y3 

y x 

x y2 y 

xy x2γ 

xy x2y 

x x2 

x2y e 

e xy 

x2 y 

y x 

University of Ife 

Ile-Ife 

Nigeria 

xy2 

x2y 

x 

x2y2 

x2y 

x2 

y2 

xy 

e 
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