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THE ADDITIVE GROUP OF A FINITE NEAR-FIELD 

IS ELEMENTARY ABELIAN 

By H. E. Heatherly 

The proposition stated in the títle of this note was first proγed by Zassenhaus 

in 1936 [51. There are several other proofs showing that a near-field has com­

mutative addition (B. H. Neumann [41. Zemmer [61. Karzel [21). The short 
proof given in. this note is from the viewpoint that a near-field is a near in­
tegral domain without proper left ideals and utiIizes the weII-known group 
theoretic result of Thompson: A finite group with. a fixed-point-free auto-
morphism of prime order is nilpotent. 

DEFINITION. A near z"ntegral domain is a (Ieft) near-ring (N. + .. ) such that 
(1) Ox=O for each x ε N. 

(2) at least one non-zero element is not a left identity. 
(3) ab=O implies a=O or b=O (no zero divisors). 

Except for the trivial case of cardinality two. every near-field is a near 
integral domain. It is easy to show that a finite near integral domain has a 
fixed-point-free automorphism of prime order defined on its additive group and 
hence this group is nilpotent [31. 

The mapping f/b)=cb is an automorphism for each nonzero element c of a 

finite near integral domain. Thus characteristic subgroups of a near integral 

domain are left ideals. If (N, +. .) is a finite near integral domain without 
proper left ideals, as in a near-field, then since (N, +) is niIpotent anc1 each 
p-Sylow subgroup is characteristic, it foIIows that (N, +) is a p-group. The 
non-trivial center of (N, +) is also characteristic so (N, +) is an abelian 

p-group. FinaIIy, the elements of order p form a characteristic subgroup and 

(N, +) must be elementary abelian. 

There are finite near integral domains without proper left ideals which are 
n<i't. near-fields (cf Clay [1]). 
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