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THE ADDITIVE GROUP OF A FINITE NEAR-FIELD
IS ELEMENTARY ABELIAN

By H. E. Heatherly

The proposition stated in the title of this note wa_slfirst proved by Zassenhaus
in 1936 [5]. There are several other proofs showing that a near-field has com-
mutative addition (B. H. Neumann [4], Zemmer [6], Karzel [2]). The short
proof given in this note is from the viewpoint that a near-field is a near in-
tegral domain without proper left ideals and utilizes the well-known group

theoretic result of Thompson: A finite group with a fixed-point-free auto-
morphism of prime order is nilpotent.

DEFINITION. A rear integral doma:n is a (left) near-ring (N, +, ) such that
(1) 0x=0 for each x € N,

(2) at least one non-zero element is not a left identity,
(3) ab=0 implies =0 or #=0 (no zero divisors).

Except for the trivial case of cardinality two, every near-field is a near
integral domain. It is easy to show that a finite near integral domain has a
fixed-point-free automorphism of prime order defined on its additive group and
hence this group is nilpotent [3].

The mapping f,(b)=cb is an automorphism for each nonzero element ¢ of a
finite near integral domain. Thus characteristic subgroups of a near integral
domain are left ideals. If (&, -+, -) is a finite near integral domain without
proper left ideals, as in a near-field, then since (N, -+) is nilpotent and each
p-Sylow subgroup is characteristic, it follows that (N, +) is a p-group. The
non-trivial center of (N, -+) is also characteristic so (N, +) is an abelian
p-group. Finally, the elements of order p form a characteristic subgroup and
(N, +) must be elementary abelian.

There are finite near integral domains without proper left ideals which are
net near-fields (cf Clay [1]).
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