AUTOMORPHISMS OF QUASI-ASSOCIATIVE ALGEBRAS

By Tae-il Suh

This note is to show that the group of automorphisms of a quasi-associativealgebra of characteristic $\neq 2$ consists of the automorphisms of an associative algebra with involution * which commute with *.

Let D be an associative algebra over a field Φ of characteristic $\neq 2$ and $\lambda \in \Phi$... Define a new multiplication - on the vector space of D by $x \cdot y=\lambda x y+(1-\lambda) y x$ in terms of the associative multiplication $x y$ of D. We have a nonassociative algebra $D^{(\lambda)}$ over Φ, called a split quasi-associative algebra if $\lambda \neq \frac{1}{2}$. A nonassociative algebra A over Φ is called a quasi-associative algebra if there exist an splitting field $\Omega \supset \Phi$, an associative algebra D over Ω and $\lambda \in \Omega, \lambda \neq \frac{1}{2}$ such that: $A_{\Omega}=\Omega \otimes_{\Phi} A=D^{(\lambda)}$. The element $\delta=\Delta^{2}$ where $\Delta=2 \lambda-1$ is called the discriminant: of A and is uniquely determined by A if we agree to use $\delta=1$ for the associa-tive algebra A.

Let A be a nonsplit quasi-associative algebra with identity over a field Φ of ${ }^{-}$ characteristic $\neq 2$ and a particular square root Δ of its discriminant δ is not in: Φ. Define an algebra D to be

$$
D=A_{\Omega}^{(\mu)} \text { where } \Omega=\Phi(\Delta), \mu=\frac{1}{2}\left(1+\Delta^{-1}\right) .
$$

Consider an automorphism * of the quadratic field $\Omega=\Phi+\Phi \Delta$ defined by $\Delta^{*}=$: $-\Delta$, extending to an automorphism $* \otimes 1$ of $A \Omega=\Omega \otimes A:(\omega \otimes a)^{(* \otimes 1)}=\omega^{*} \otimes a$, $(\alpha+\beta \Delta)^{*}=\alpha-\beta \Delta$ for $\omega \in \Omega, a \in A, \alpha, \beta \in \bar{\sigma}$. Let us denote $* \otimes 1$ by $*$ again. K.. McCrimmon in [2] has shown that D is associative and

$$
A=H\left(D^{(\lambda)}, *\right), \lambda=\frac{1}{2}(1+\Delta),
$$

the subalgebra of symmetric elements of $D^{(\lambda)}$ under the $*$. Assuming that. $\lambda \neq 0,1, \frac{1}{2}$ we use this representation of A to determine an arbitrary automorphism σ of A. Since $(x \cdot y)^{\sigma}=x^{\sigma} \cdot y^{\sigma}, x, y \in A$ and σ is linear on the vectorspace of $A,(x y)^{\sigma}-x^{\sigma} y^{\sigma}=\lambda^{-1}(\lambda-1)\left\{(y x)^{\sigma}-y^{\sigma} x^{\sigma}\right\}$. By interchanging the role of: x and $y,(y x)^{\sigma}-y^{\sigma} x^{\sigma}=\lambda^{-1}(\lambda-1)\left\{(x y)^{\sigma}-x^{\sigma} y^{\sigma}\right\}$ and hence $(x y)^{\sigma}-x^{\sigma} y^{\sigma}=$
$\left\{\lambda^{-1} \lambda-1\right\}^{2}\left\{(x y)^{\sigma}-x^{\sigma} y^{\sigma}\right\}$. It follows from the assumption $\lambda \neq \frac{1}{2}$ that $(x y)^{\sigma}-x^{\sigma} y^{\sigma}$ $=0$, that is, $(x y)^{\sigma}=x^{\sigma} y^{\sigma}$ for all x, y of A. Since $\Omega=\Phi(\Delta)=\Phi+\Phi \Delta, D^{(\lambda)}=A_{\Omega}=A+A \Delta$. We extend the σ to a linear transformation $1 \otimes \sigma$ of A_{Ω} by defining $(a+b \Delta)^{(1 \otimes \sigma)}$ $=a^{\sigma}+b^{\sigma} \Delta$. Then the linear extension $1 \otimes \sigma$ is an automorphism of the associative algebra D, which is denoted by σ again. It follows that $\sigma *(=(1 \otimes \sigma)(* \otimes 1))=* \sigma$. Conversely, an automorphism σ of D which commute with the involution * induces an automorphism of A. This completes the following

THEOREM. Let A be a nonsplit quasi-associative algebra with identity over a field Φ of characteristic $\neq 2$. Let $A=H\left(D^{(\lambda)}, *\right)$ be McCrimmon's representation of A. Then the group of automorphisms of A consists of all automorphisms of the associative algebra D which commute with involution *.

REMARK 1. If A is a split quasi-associative algebra, that is, $A=D^{(\lambda)}, \lambda \neq$ $\frac{1}{2}$, for some associative algebra D, then the automorphism group of A is precisely the group of automorphisms of D.

REMARK 2. Let a quasi-associative algebra A be finite dimensional central simple over Φ. It is known that the symmetrized algebra A^{+}is a central simple Jordan algebra of type $A_{\text {II }}$ over Φ and that, in the representation $A=H\left(D^{(\lambda)}\right.$, *), the Jordan algebra $H(D, *)$ of *-symmetric elements of the associative algebra D is just A^{+}, i.e. $A^{+}=H(D, *)$. Since powers of an element a in A are identical with those of a in A^{+}, the generic norms in A and A^{+}are identical. We apply a theorem of N. Jacobson ([1], p. 191) to obtain the following characterization of norm-preserving linear transformations of A : The group of bijective linear transformations of A which preserve the generic norm N is the set of linear transformations η of the form: $x \eta=\gamma a^{*} x^{\nu} a$ where $\gamma \in \Phi, \gamma^{m} N\left(a^{*} a\right)$ $=1, m=$ the degree of A, and either $\nu=1$ or ν is an anti-automorphism of D over $\Omega=\Phi(2 \lambda-1)$.

East Tennessee State University

REFERENCES

[1] N. Jacobson, Some groups of transformations defined by Jordan algebras I, J. Reine Angew. Math. 201, 1959, 178-195.
[2] K. McCrimmon, A note on quasi-associative algebras, Proc. Amer. Math. Soc., 17, 1966, 1455-1459.

