Kyungbook Math. J. Volume 18, Number 1 June, 1978

AUTOMORPHISMS OF QUASI-ASSOCIATIVE ALGEBRAS

By Tae-il Suh

This note is to show that the group of automorphisms of a quasi-associativealgebra of characteristic $\neq 2$ consists of the automorphisms of an associative^{...} algebra with involution * which commute with *.

Let D be an associative algebra over a field Φ of characteristic $\neq 2$ and $\lambda \in \Phi$. Define a new multiplication \cdot on the vector space of D by $x \cdot y = \lambda x y + (1 - \lambda) y x$ in terms of the associative multiplication xy of D. We have a nonassociativealgebra $D^{(\lambda)}$ over Φ , called a split quasi-associative algebra if $\lambda \neq \frac{1}{2}$. A nonassociative algebra A over Φ is called a quasi-associative algebra if there exist a splitting field $\Omega \supset \overline{\Phi}$, an associative algebra D over Ω and $\lambda \in \Omega$, $\lambda \neq \frac{1}{2}$ such that: $A_{\Omega} = \Omega \otimes_{\sigma} A = D^{(\lambda)}$. The element $\delta = \Delta^2$ where $\Delta = 2\lambda - 1$ is called the *discriminant*: of A and is uniquely determined by A if we agree to use $\delta = 1$ for the associative algebra A.

Let A be a nonsplit quasi-associative algebra with identity over a field Φ of characteristic $\neq 2$ and a particular square root Δ of its discriminant δ is not in

 Φ . Define an algebra D to be

$$D=A_{\Omega}^{(\mu)}$$
 where $\Omega=\Phi(\Delta)$, $\mu=\frac{1}{2}(1+\Delta^{-1})$.

Consider an automorphism * of the quadratic field $\Omega = \Phi + \Phi \Delta$ defined by $\Delta^* = -2$ -A, extending to an automorphism $* \otimes 1$ of $A_{\Omega} = \Omega \otimes A$: $(\omega \otimes a)^{(* \otimes 1)} = \omega^* \otimes a$, $(\alpha + \beta \Delta)^* = \alpha - \beta \Delta$ for $\omega \in \Omega$, $\alpha \in A$, $\alpha, \beta \in \Phi$. Let us denote $* \otimes 1$ by * again. K. McCrimmon in [2] has shown that D is associative and

$$A = H(D^{(\lambda)}, *), \ \lambda = \frac{1}{2}(1 + \Delta),$$

the subalgebra of symmetric elements of $D^{(\lambda)}$ under the *. Assuming that $\lambda \neq 0$, 1, $\frac{1}{2}$ we use this representation of A to determine an arbitrary automorphism σ of A. Since $(x \cdot y)^{\sigma} = x^{\sigma} \cdot y^{\sigma}$, $x, y \in A$ and σ is linear on the vector space of A, $(xy)^{\sigma} - x^{\sigma}y^{\sigma} = \lambda^{-1}(\lambda - 1)\{(yx)^{\sigma} - y^{\sigma}x^{\sigma}\}$. By interchanging the role of x and y. $(yx)^{\sigma} - y^{\sigma}x^{\sigma} = \lambda^{-1}(\lambda - 1)\{(xy)^{\sigma} - x^{\sigma}y^{\sigma}\}$ and hence $(xy)^{\sigma} - x^{\sigma}y^{\sigma} = \lambda^{-1}(\lambda - 1)\{(xy)^{\sigma} - x^{\sigma}y^{\sigma}\}$

Tae-il Suh

2

 $\{\lambda^{-1} \lambda - 1\}^2 \{(xy)^{\sigma} - x^{\sigma} y^{\sigma}\}$. It follows from the assumption $\lambda \neq \frac{1}{2}$ that $(xy)^{\sigma} - x^{\sigma} y^{\sigma} = 0$, that is, $(xy)^{\sigma} = x^{\sigma} y^{\sigma}$ for all x, y of A. Since $\Omega = \Phi(A) = \Phi + \Phi A$, $D^{(\lambda)} = A_{\Omega} = A + AA$. We extend the σ to a linear transformation $1 \otimes \sigma$ of A_{Ω} by defining $(a+bA)^{(1\otimes \sigma)} = a^{\sigma} + b^{\sigma}A$. Then the linear extension $1 \otimes \sigma$ is an automorphism of the associative algebra D, which is denoted by σ again. It follows that $\sigma * (=(1 \otimes \sigma)(* \otimes 1)) = *\sigma$.

Conversely, an automorphism σ of D which commute with the involution * induces an automorphism of A. This completes the following

THEOREM. Let A be a nonsplit quasi-associative algebra with identity over a field Φ of characteristic $\neq 2$. Let $A = H(D^{(\lambda)}, *)$ be McCrimmon's representation of A. Then the group of automorphisms of A consists of all automorphisms of the associative algebra D which commute with involution *.

REMARK 1. If A is a split quasi-associative algebra, that is, $A=D^{(\lambda)}$, $\lambda \neq \frac{1}{2}$, for some associative algebra D, then the automorphism group of A is precisely the group of automorphisms of D.

REMARK 2. Let a quasi-associative algebra A be finite dimensional central simple over Φ . It is known that the symmetrized algebra A^+ is a central simple Jordan algebra of type A_{\parallel} over Φ and that, in the representation $A=H(D^{(\lambda)},$ *), the Jordan algebra H(D, *) of *-symmetric elements of the associative algebra D is just A^+ , i.e. $A^+=H(D, *)$. Since powers of an element a in Aare identical with those of a in A^+ , the generic norms in A and A^+ are iden-

tical. We apply a theorem of N. Jacobson ([1], p. 191) to obtain the following characterization of norm-preserving linear transformations of A: The group of bijective linear transformations of A which preserve the generic norm N is the set of linear transformations η of the form: $x\eta = \gamma a^* x^{\nu} a$ where $\gamma \in \Phi$, $\gamma^m N(a^*a) = 1$, m = the degree of A, and either $\nu = 1$ or ν is an anti-automorphism of D over $\Omega = \Phi(2\lambda - 1)$.

East Tennessee State University

₹_

REFERENCES

[1] N. Jacobson, Some groups of transformations defined by Jordan algebras I, J. Reine Angew. Math. 201, 1959, 178-195.
[2] K. McCrimmon, A note on quasi-associative algebras, Proc. Amer. Math. Soc., 17, 1966, 1455-1459.