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On Matroids and Graphs
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Seoul National University, Seoul, Korea

1. Introduction

In this paper we show that Eulerian matroids and bipartite matroids are dual concepts.
But this does not hold for non-binary matroids.

A matroid M(E, B) is a finite set E togather with a non-empty collection of subsets
of E, called bases, such that

(i) all bases have the same cardinality,

@) if B, and B, are bases, and x€B,, there exists yeB, such that (B, -{x})U {3} is
also a base.

A subset of E is an independent set if it is contained in some base. Any subset which
is not independent is dependent. A singleton dependent set is a loop and a circuit is a
minimal dependent set. The collection of all circuits of M is denoted by C(M). The dual’
M* of M is the matroid on E consisting of bases of the form £-B where Bis a base of M.

A cocircuit of M(E, @) is circuit of the dual matroid M* (£, $*) where @*=[(E-B|
Be 3}

Let M be a matroid on E and S a subset of E.

We define M|S, the reduction of M to S, to be the matroid on S whose circuits are
those circuits of M contained in S. We define M-S, the contraction of M to S, to the
matroid on S whose circuits are the minimal non-empty members of the collection {CNnS]

CeC(MD}.
Generalizing graph-theoretic concepts we define M(E, @) to be an Euler matroid if there
exist disjoint circuits Ci, Ca ...... , C, such that

E=Cl U Cz U...... U C,,.
We define M(E, B) to be a bipartile matroid if every circuit has even cardinality.
We define M to be a binary matroid if M is representable over the field of integers

modulo two. ([1], (2D

2. Lemmas
We shall need the following lemmas.



Lemma 1. For a matroid M following properties are equivalent:

@ M is binary.
® M* is binary, where M* is dual matroid of M.
© "CeCM), "C*eC(M®), 1CNC* =0 (mod 2) 2

Lemma 2. Let M=M(E, B) be a matroid. A circuit C* of M is a minimal non-empty
subset of E having a non-empty intersection with every base of M.

Lemma 3. If M(E, B) is a binary matroid and E is a subsel of E, then the coniraction
matroid M(E', M-E") is binary. 3H

We use above lemmas to prove the following theorem.
Theorem. A binary matroid is Euler iff its dual matroid is bipartite.

3. Proof of theorem

Let M(E, @) be binary and Euler. From the definitions of an Euler matroid, there
exist a collection (Cy,...... ,C,} of disjoint circuits of M(E, @) such that E=C,uC,U...uC,.
Let C* be any cocircuit. Then since M(E, B) is binary, by lemma 1 |C,NC*|=2k,, 1<i<n,
where k; is integer.
Hence |C*|=L£IC,nC* =25 , and M(E, $*)=M* is bipartite.

Suppose now M(E, &) is binary and bipartite. We use induction on |E} to show that
M(E, ®#*) is Eulér. Assume that this holds for matroids having fewer |E| elements.

Let C* be any cocircuit of M(E, B). We show that there exists such a cocircuit C*.
Let x& £ and suppose x belongs to no cocircuit, then x belongs to every base of M(E, _@*).'

(Lemma 2) Hence

x€ N B¥ sox¢ N B
Bre G* Br*e ¥

Thus {x} is a dependent set, so that {x} is a loop.

Since M(E, @) is bipartite, a circuit {x} has even cardinality and we have arrived at
a contradiction.

Next we shall show that S can be expressed is the union of a mutually disjoint set of
cocircuits. If C* is a cocircuit and E=C¥, it is trivial. When C* is proper subset of E, .
let E’=FE-C* and consider the contraction matroid M(E’, M-E") of M(E, B) to E'. M(F’,
M-E") has as circuits the minimal non-empty members of the family {CnE’|Cel (M)}
where C(M) is the collection of all circuits of M(E, B).

Since M(E, @) is bipartite, |C| is even for all CeC(M) and since M(E, B) is
binary and C* is a cocircuit of M, |C*nC| is even for all Ce(C(M). Hence

ICNE|=|Cn(EC*)|=|Cl|—|CnC*|
is even for all CeC(M) and therefore the contraction matroid M(E’, M-E’) is bipartite.
By lemma 3, M(E’, M-E’) is binary. By the induction hypothesis,
E=C*uCyx*...... UucC*



where C;* are mutually disjoint cocircuits of M(E’, M-E’). But any cocircuit of M(F’, M-
E") isa cocircuit of M(E, @). Hence E =E UC*=C*¥U ------ UC,*UC* is a partition of £
into mutually disjoint cocircuits. Thus M(E, $*) is an Euler matroid.
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