On Matroids and Graphs

By Yuon Sik Kim

Seoul National University, Seoul, Korea

1. Introduction

In this paper we show that Eulerian matroids and bipartite matroids are dual concepts. But this does not hold for non-binary matroids.

A matroid $M(E, \mathcal{B})$ is a finite set E togather with a non-empty collection of subsets of E, called bases, such that

- (i) all bases have the same cardinality,
- (ii) if B_1 and B_2 are bases, and $x \in B_1$, there exists $y \in B_2$ such that $(B_1 \{x\}) \cup \{y\}$ is also a base.

A subset of E is an *independent set* if it is contained in some base. Any subset which is not independent is *dependent*. A singleton dependent set is a *loop* and a *circuit* is a minimal dependent set. The collection of all circuits of M is denoted by C(M). The *dual* M^* of M is the matroid on E consisting of bases of the form E-B where B is a base of M.

A cocircuit of $M(E, \mathcal{B})$ is circuit of the dual matroid M^* (E, \mathcal{B}^*) where $\mathcal{B}^* = \{E \cdot B \mid B \in \mathcal{B}\}$

Let M be a matroid on E and S a subset of E.

We define M|S, the *reduction* of M to S, to be the matroid on S whose circuits are those circuits of M contained in S. We define $M \cdot S$, the *contraction* of M to S, to the matroid on S whose circuits are the minimal non-empty members of the collection $\{C \cap S \mid C \in \mathcal{C}(M)\}$.

Generalizing graph-theoretic concepts we define $M(E, \mathcal{B})$ to be an *Euler matroid* if there exist disjoint circuits C_1, C_2, \ldots, C_n such that

$$E=C_1\cup C_2\cup\ldots\cup C_n$$

We define $M(E, \mathcal{B})$ to be a bipartite matroid if every circuit has even cardinality.

We define M to be a binary matroid if M is representable over the field of integers modulo two. ([1], [2])

2. Lemmas

We shall need the following lemmas.

Lemma 1. For a matroid M following properties are equivalent:

- (a) M is binary.
- ⓑ M^* is binary, where M^* is dual matroid of M.

©
$${}^{\mathsf{v}}C \in \mathcal{C}(M), \; {}^{\mathsf{v}}C^* \in \mathcal{C}(M^*), \; |C \cap C^*| \equiv 0 \pmod{2}$$
 ([2])

Lemma 2. Let $M=M(E, \mathcal{B})$ be a matroid. A circuit C^* of M is a minimal non-empty subset of E having a non-empty intersection with every base of M.

Lemma 3. If $M(E, \mathcal{B})$ is a binary matroid and E is a subset of E, then the contraction matroid $M(E', M \cdot E')$ is binary. ([3])

We use above lemmas to prove the following theorem.

Theorem. A binary matroid is Euler iff its dual matroid is bipartite.

3. Proof of theorem

Let $M(E, \mathcal{B})$ be binary and Euler. From the definitions of an Euler matroid, there exist a collection $\{C_1, \ldots, C_n\}$ of disjoint circuits of $M(E, \mathcal{B})$ such that $E=C_1 \cup C_2 \cup \ldots \cup C_n$. Let C^* be any cocircuit. Then since $M(E, \mathcal{B})$ is binary, by lemma $1 |C_i \cap C^*| = 2k_i$, $1 \le i \le n$, where k_i is integer.

Hence $|C^*| = \sum_{i=1}^n |C_i \cap C^*| = 2 \sum_{i=1}^n k_i$ and $M(E, \mathcal{B}^*) = M^*$ is bipartite.

Suppose now $M(E, \mathcal{B})$ is binary and bipartite. We use induction on |E| to show that $M(E, \mathcal{B}^*)$ is Euler. Assume that this holds for matroids having fewer |E| elements.

Let C^* be any cocircuit of $M(E, \mathcal{B})$. We show that there exists such a cocircuit C^* . Let $x \in E$ and suppose x belongs to no cocircuit, then x belongs to every base of $M(E, \mathcal{B}^*)$. (Lemma 2) Hence

$$x \in \bigcap B^*$$
 $\therefore x \notin \bigcap B$
 $B^* \in \mathcal{B}^*$

Thus $\{x\}$ is a dependent set, so that $\{x\}$ is a loop.

Since $M(E, \mathcal{B})$ is bipartite, a circuit $\{x\}$ has even cardinality and we have arrived at a contradiction.

Next we shall show that S can be expressed is the union of a mutually disjoint set of cocircuits. If C^* is a cocircuit and $E=C^*$, it is trivial. When C^* is proper subset of E, let $E'=E\cdot C^*$ and consider the contraction matroid $M(E',M\cdot E')$ of $M(E,\mathcal{B})$ to E'. $M(E',M\cdot E')$ has as circuits the minimal non-empty members of the family $\{C\cap E' | C\in \mathcal{C}(M)\}$ where $\mathcal{C}(M)$ is the collection of all circuits of $M(E,\mathcal{B})$.

Since $M(E, \mathcal{B})$ is bipartite, |C| is even for all $C \in \mathcal{C}(M)$ and since $M(E, \mathcal{B})$ is binary and C^* is a cocircuit of M, $|C^* \cap C|$ is even for all $C \in \mathcal{C}(M)$. Hence

$$|C \cap E'| = |C \cap (E - C^*)| = |C| - |C \cap C^*|$$

is even for all $C \in \mathcal{C}(M)$ and therefore the contraction matroid $M(E', M \cdot E')$ is bipartite. By lemma 3, $M(E', M \cdot E')$ is binary. By the induction hypothesis,

$$E' = C_1 * \cup C_2 * \dots \cup \cup C_n *$$

where C_i^* are mutually disjoint cocircuits of $M(E', M \cdot E')$. But any cocircuit of $M(E', M \cdot E')$ is a cocircuit of $M(E, \mathcal{B})$. Hence $E = E' \cup C^* = C_1^* \cup \cdots \cup C_n^* \cup C^*$ is a partition of E into mutually disjoint cocircuits. Thus $M(E, \mathcal{B}^*)$ is an Euler matroid.

References

- [1] Robin J. Wilson(1972) Introduction to graph theory Acad. Press,
- [2] Rabe von Randow(1975) Introduction to the theory of matroids Springer-Verlag,
- [3] G. J. Minty(1966), On the Axiomatic Foundations of the Theories of Directed Linear Graph, Electrical Networks and Networkprogramming J. Math. Mech. 15 485-520

국 문 초 룩

bipartite graph 와 Euler graph의 정의를 사용하는 대신 이들 graph가 나타내는 특성을 사용하여 bipartite matroid와 Euler matroid를 정의하고 이들 matroid가 binary일 때 서로 dual의 관계가 있음을 증명한다. 이 관계를 이용하여 bipartite graph와 Euler graph의 성질을 밝힐수 있다.