Prime Z-Filters And Primary Ideals In C(X)

By Bae Soon Sook

Kyung-Nam Industrial Junior Callege, Ma San, Korea

In this paper, we denote C(X) as the ring of continous real valued functions on a topological space X. If I is an ideal in C(X), the family $Z[I] = \{Z(f); f \in I\}$ is a z-filter on X. If \mathcal{F} is a z-filter on X, then the family $Z[\mathcal{F}]$ is an ideal in C(X). An ideal I is a z-ideal if and only if $Z(f) \in Z[I]$ implies $f \in I$, i.e. I = ZZ[I].

If \mathcal{F} is a z-filter on X, then $Z[\mathcal{F}]$ is a z-ideal. Every z-ideal in C(X) is an intersection of prime ideals. If P is a prime ideal in C(X) then Z[P] is a prime z-filter. A z-filter \mathcal{F} is prime if $Z_1 \cup Z_2 \in \mathcal{F}$ implies Z_1 or Z_2 is contained in \mathcal{F} . An ideal P is primary if $fg \in I$ implies either $f \in I$ or $g'' \in I$ for some n > 0 and $P \neq C(X)$. If I is primary, $r(I) = \{f \in C(X); f'' \in I \text{ for some } n > 0\}$ is prime. If \mathcal{F} is a prime z-filter, then $Z[\mathcal{F}]$ is prime. [1] [2] [3] [4] [6]

Lemma 1 For any z-ideal I in C(X), the followings are equivalent:

- (1) I is primary
- (2) I contains a primary ideal
- (3) For all f, $g \in C(X)$, if fg = 0, then either $f \in I$ or $g'' \in I$ for some n > 0
- (4) For every $f \in C(X)$, there is a zero-set in Z[I] on which f does not change sign. [5]

Theorem 2 If \mathcal{J} is a primary ideal in C(X), then $Z[\mathcal{J}]$ is a prime z-filter on X.

Proof. Let $\mathcal{J}'=Z^-[Z[\mathcal{J}]]$, then $Z[\mathcal{J}']=Z[\mathcal{J}]$ and \mathcal{J}' is a z-ideal which contains the primary ideal \mathcal{J} . By Lemma 1 \mathcal{J}' is primary. Now, suppose that $Z(f) \cup Z(g) = Z(fg) \in Z[\mathcal{J}']$, then $fg \in \mathcal{J}'$ since \mathcal{J}' is a primary z-ideal. Hence either $f \in \mathcal{J}'$ or $g'' \in \mathcal{J}'$ for some n>0. Thus either $Z(f) \in Z[\mathcal{J}'] = Z[\mathcal{J}]$ or $Z(g'') = Z(g) \in Z[\mathcal{J}'] = Z[\mathcal{J}]$. Therefore $Z(f) \in Z[\mathcal{J}]$ or $Z(g) \in Z[\mathcal{J}]$.

Henceforth, there is an one-to-one correspondence between primary ideals in C(X) and prime z-filters on X.

Theorem 3 If I is a z-ideal, then we have r(I)=I, in other words, I is radical.

Proof. Since every z-ideal I is an intersection of all the prime ideal containing it, thus r(I)=I.

Corollary 4 Every primary z-ideal is prime.

Theorem 5 For all ideal I, we have Z[I] = Z[R(I)]

Proof. It is clear that $Z[I] \subset Z[r(I)]$. Conversely, let Z be any zero-set in Z[r(I)]. Then there exists $f \in r(I)$ such that $f'' \in I$ for some n > 0. Hence $Z = Z(f'') = Z(f) \in Z[I]$, therefore Z[I] = Z[r(I)].

Using Theorem 5 to prove Theorem 2, we can do in another method:

If \mathcal{J} is primary, then $r(\mathcal{J})$ is prime. Hence $Z[\mathcal{J}] = Z[r(\mathcal{J})]$ is a prime z-filter.

References

- [1] Leonard Gillman & Meyer Jerison (1960), Rings of Continous Functions, D. Van No strand Comp. Inc.
- [2] Carl W. Kohls(1958), "Prime Ideals in Rings of Continous Functions," Illinois J. M ath. 2 pp. 505-536
- [3] ______, (1958) "Prime ideals in Rings of Continous Functions II," Duke Math. J. pp. 447-458.
- [4] M. F. Atiyah, Frs & I. G. Macdonald (1969), Introduction to Commutative Algebra, Addi-son-Wesley publishing Comp.
- [5] Bae S.S. (to appear) "A Note of Primary ideals in C(X)"
- [6] Serge Lang(1970), Algebra, Addison-Wesley Publishing Comp.