On the finite group of units of a ring

by Jeon, Song Ki

Dan Kook University, Seoul, Korea.

1. Introduction

There are several results in the literature which relate the structure of a ring with identity to that of its group of units.

Gilmer[3] determines all finite commutative rings whose group of units is cyclic.

In this paper we will consider the nature of the finite group of units of a ring whose order is odd and we will find a necessary and sufficient condition for a finite group G of odd order to be the group of units of some ring.

Our main theorems are as follows:

Theorem 1. If G is the group of units of a ring and if G is finite of odd order, then the subring [G] of R generated by G is a finite direct sum of Galois field of characteristic 2. Thus

$$(G) = GF(2^{k_1}) \oplus GF(2^{k_2}) \oplus \cdots \oplus GF(2^{k_r}).$$

Theorem 2. A finite group of odd order is the group of units of some ring if and only if G is abelian and is the finite direct product of cyclic groups G_i , where the order of each G_i is of the form 2^k-1 .

The notation in this paper is standard and taken from [4]. By a ring we mean a ring with identity. The finite field with q elements is called the Galois field, and is denoted by GF(q). The characteristic of a Galois field GF(q) is a prime number p and $q=p^n$ for some positive integer n.

2. Preliminary results

Let R be a ring with identity. An element of R is called a unit if it has the multiplicative inverse in R. The set of all units in R forms a multiplicative group, which is called the group of units of the ring R.

Let K be a field. Then the matrix ring $Mat_n(K)$ of $n \times n$ matrices over K is simple, and the group of units of $Mat_n(K)$ is the general linear group GL(n, K) consisting of all non-singular $n \times n$ matrices over K.

The following propositions will be needed in the next section.

Proposition 1. (Maschke's theorem) Let G be a finite group of order n, and let K be a field whose characteristic does not divide n. Then the group algebra K[G] is a semisimple

algebra. (1. p. 16).

Proposition 2. (Wedderburn-Artin's theorem) Let A be a finite dimensional semisimple algebra over a field K. Then

$$A \approx \operatorname{Mat}_{n}(D_{1}) \oplus \operatorname{Mat}_{n}(D_{2}) \oplus \cdots \oplus \operatorname{Mat}_{n}(D_{r}).$$

where each D, is a division ring. (4. Vol. II. p. 156).

Proposition 3. (Wedderburn's theorem) A finite division ring is necessary a communative field. [4. Vol. []. p. 203].

If K is the finite field with q elements, then we denote

$$Mat_n(K) = Mat_n(q), GL(n, K) = GL(n, q).$$

If n=1, then $Mat_n(q)$ is GF(q) and GL(n,q) is the multiplicative group of the field GF(q).

3. Main theorems

In this section we will prove our main theorems.

Theorem 1. If G is the group of units of a ring R and if G is finite of odd order, then the subring [G] of R generated by G is a finite direct sum of Galois fields of characteristic 2, Thus

$$(G) = GF(2^{k_1}) \oplus GF(2^{k_2}) \oplus \cdots \oplus GF(2^{k_r}).$$

Proof. Since G has odd order, -1=1; otherwise $\{-1,1\}$ would be a subgroup of G of order 2. Hence the subring [G] generated by G is a finite dimensional algebra over GF(2). [G] is a representation module of G over GF(2) and since 2, the characteristic of GF(2), does not divide the order of G, Maschke's theorem (Prop. 1) implies that [G] is semisimple. By the Wedderburn-Artin's theorem (Prop. 2), we have

$$[G] = Mat_{n_1}(D_1) \oplus Mat_{n_2}(D_2) \oplus \cdots \oplus Mat_{n_r}(D_r)$$

where each D_i is a division ring. Since D_i is finite, it follows from Prop. 3 that D_i is a finite field, and since -1=1 in [G], the field D_i is a Galois field of characteristic 2. Therefore,

$$[G] = \operatorname{Mat}_{n_1}(2^{k_1}) \oplus \operatorname{Mat}_{n_2}(2^{k_2}) \oplus \cdots \oplus \operatorname{Mat}_{n_r}(2^{k_r})$$

for some poistive integers k_1, \dots, k_r . Hence the group of units of [G] is

$$GL(n_1, 2^{k_1}) \times GL(n_2, 2^{k_2}) \times \cdots \times GL(n_r, 2^{k_r}).$$

On the other hand, the order of GL(n,q) is $(q^n-1)(q^n-q)\cdots(q^n-q^{n-1})$ and when q is ever $(q^n-1)(q^n-q)\cdots(q^n-q^{n-1})$ is odd if and only if n=1. Since the group of units of [G] i of odd order, this fact implies that each n_i is 1. Hence we have

$$(G) = GF(2^{k_1}) \oplus GF(2^{k_2}) \oplus \cdots \oplus GF(2^{k_r}).$$

Theorem 2. A finite group G of odd order is the group of units of some ring if and only if G is abelian and is the finite direct product of cyclic groups G_i , whose order of each G_i of the form $2^{h_i}-1$.

Proof. The necessary condition follows from Theorem 1 and the fact that the multiplicative group K^* of a finite field K is cyclic. Conversely, if G is abelian and $G=G_1\times G_2\times \cdots \times G_r$, where G_r is the multiplicative group of Galois field $GF(2^k)$, then G is the group of G

units of the ring

 $R = GF(2^{k_1}) \oplus GF(2^{k_2}) \oplus \cdots \oplus GF(2^{k_r}).$

Corollary. A prime power p^m is the number of units of some ring if and only if a prime p is 2 or 2^q-1 for some number q.

Proof. If p=2 (resp. $p=2^{r}-1$), then p+1=3 (resp. $p+1=2^{r}$), and the *m*-fold direct sum of GF(3) (resp. GF(2^{r})) has precisely p^{m} units.

Conversely, if a group of prime power order p^m is the group of units of a ring and if $p \neq 2$, then by the theorem 2, p^m is a product of numbers of the form 2^k-1 . Therefore, for some positive integers n and k, $p^n=2^k-1$. For n even, $p^n-1=(p-1)$ $(p^{n-1}+\cdots + p+1)$ is divisible by 4, whereas for $k \neq 1$, 2^k-2 is not. Hence n is odd and p+1 divides $p^n+1=2^k$, so that p+1 is a power of 2.

References

- [1] Dornhoff, L. (1971), Group representation theory, Part A, Marcel Dekker, Inc., New York.
- [2] Eldridge, K. E. (1963), On ring structures determined by groups, *Proc. Amer. Math. Soc.*, 23 pp. 472-477.
- [3] Gilmer, R. (1963), Finite rings having a cyclic multiplicative group of units, Amer. J. Math. 85 pp. 447-452.
- [4] Van der Waerden, B.L. (1949 and 1950), Modern algebra, Vol. I and I, Ungar, New York.