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On the finite group of units of a ring
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Dan Kook University, Seoul, Korea.

1. Introdaction

There are several results in the literature which relate the structure of a ring with
identity to that of its group of units.

Gilmer[3] determines all finite commutative rings whose group of units is cyclic.

In this paper we will consider the nature of the finite group of units of a ring whose
order is odd and we will find a necessary and sufficient condition for a finite group G of
odd order to be the group of units of some ring.

Our main theorems are as follows:

Theorem 1. If G is the group of units of a ring and if G is finite of odd order, then Lhe
subring (G) of R generated by G is a finite direct sum of Galois field of characteristic 2.
Thus ’

(G)=GF(2*) DGF (24) Deeereeee oo BGF(28).

Theorem 2. A finite group of odd order is the group of units of some ring if and only if
G is abelian and is the finite direct product of cyclic groups G, where the order of each
G, is of the form 2¢—1. :

The notation in this paper is standard and taken from [4]. By a ring we mean a ring
with identity. The finite field with ¢ elements is called the Galois field, and is denoted by
GF(g). The characteristic of a Galois field GF(¢g) is a prime number p and g=p" for some
positive integer #.

2. Preliminary results

Let R be a ring with identity. An element of R is called a unit if it has the multiplicative
inverse in R. The set of all units in R forms 2z multiplicative group, which is called the
group of units of the ring R.

Let K be a field. Then the matrix ring Mat,(K) of #X# matrices over K is simple, and
the group of units of Mat,(K) is the general linear group GL(n,K) consisting of all non-
singular #X#» matrices over K.

The following propositions will be needed in the next section.

Proposition 1. (Maschke’s theorem) Let G be a finite group of order n, and let K be a
feld whose characteristic does not divide n. Then the group algebra K(G) is a semisimple



algebra. (1. p. 16].
Proposition 2. (Wedderburn-Artin’s theorem) Let A be a finite dimensional semisimple
algebra over a field K. Then
A= Mat,(D,)@Mat,(D,) Peereverseens ®Mat,(D,).
where each D; is a division ring. (4. Vol. [. p. 156).
Proposition 3. (Wedderburn’s theorem) A finite division ring is necessary a communative
field. (4. Vol. 1. p. 203).
If K is the finite field with ¢ elements, then we denote
Mat,(K)=Mat,(¢), GL(# K)=GL(n,q).
If w=1, then Mat,(¢) is GF(¢) and GL(# ¢) is the multiplicative group of the field
GF(9).

3. Main theorems

In this section we will prove our main theorems.

Theorem 1. If G is the group of units of a ring R and if G is finite of odd order, then
the subring (G) of R generated by G is a finite direct sum of Galois fields of characteristic 2,
Thus

(G)=GF(2")®GF Q") @+ereee e @DGF(2%).

Proof. Since G has odd order, —1=1; otherwise {--1,1} would be a subgroup of G of
order 2. Hence the subring [G) generated by G is a finite dimensional algebra over GF (2).
{G] is a representation module of G over GF(2) and since 2, the characteristic of GF (2),
does not divide the order of G, Maschke’s theorem (Prop. 1) implies that (G] is semisim-
ple. By the Wedderburn-Artin’s theorem (Prop. 2), we have

{Gl=Mat,,(D,) ®Mats, (D) @:erseseer+-BMat,,(D,)
where each D, is a division ring. Since D; is finite, it follows from Prop. 3 that D, is ¢
finite field, and since —1=1 in [G), the field D, is a Galois field of characteristic 2.
Therefore,

(GI=Mat,,(2*) ®Mat,, (2¥)Pe+es+eeeee--BMat,, (2*)
for some poistive integers ky, -+~ , k,. Hence the group of units of (G] is

GL (11, 20) X GL (85, 28) X +ssa0seeeens X GL(n,, 2*).
On the other hand, the order of GL(n,¢) is (¢"— 1D {(g"—¢g) -+ (@"—¢q""") and when ¢ is eve
=D =@ (g"—¢"") is odd if and only if n=1. Since the group of units of [(G] i
of odd order, this fact implies that each #; is 1. Hence we have

(G)=GF(2")YDGEF (24)@resseverseee GGF(@2»).

Theorem 2. A finite group G of odd order is the groud of units of some ring if and oni
if G is abelian and is the finite divect product of cyclic groups G, whose order of each G;
of the form 2—1,

Proof. The necessary condition follows from Theorem 1 and the fact that the multiplic:
tive group K* of a finite field K is cyclic. Conversely, if G is abelian and G=G;xG; %"
«+XG,, where G, is the multiplicative group of Galois field GF(2%), then G is the group «



units of the ring
R=GF(2%) DGF(25)@+evereseeres DGF(2").

Corollary. A prime power p™ is the number of units of some ring if and only if a prime
p is 2 or 2°—1 for some number q.

Proof. If p=2 (resp. p=2'—1), then p+1=3 (resp. p+1=2", and the m-fold direct sum
of GF(3) (resp. GF(29)) has precisely p™ units.

Conversely, if a group of prime power order p” is the group of units of a ring and if
p#2, then by the theorem 2, p” is a product of numbers of the form 2*—1. Therefore,
for some positive integers # and &, p"=2*—1. For #n even, p"—1=(p—1 (p" ' +-wee +p+1)
is divisible by 4, whereas for k#1, 2*—2 is not. Hence # is odd and p+1 divides p"+1=2%
so that p+1 is a power of 2.
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