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On Metrizability of Topological Spaces
by Heung Ki Kim
Kang Won National University, Chun Cheon, Korea.

In [1], it was shown that a regular space is metrizable if and only if it is cs-semistra-
tifiable and wA-space. Also, in [2], H.R. Bennett and H. W, Martin have shown that a
regular space X is a Moore space if and only if X is a c-semistratifiable space and a Moore
(mod K) space. And by S.Y. Choi and Y.S. Kim [3], a developable (mod K) T,-space is
wA-space.

Here, a cs-stratifiable space will be characterized and will be shown that a regular and
compact cs-semistratifiable space is metrizable. In this paper all spaces are assumed to
be a T.-space and all undefined terms and notions may be found in [8].

Definition Let (X, ) be a topological space and let g be a function from NxX to 9.
Then g is called a COC-function for X if it satisfies the following two conditions.:

) x= 81 g(n, x) for all x€X,

(i) gln+1,2)cgln, x) for all neN and zeX.
We adopt the convention that if {x,} is a sequence, {x,> denotes the range of the sequence
{x,} and {(x;=x,> denotes {x} U <{x.). '

Definition A cs-semistratification for a topological space X is a mapping g from NxX to
the topology of X which satisfies the following conditions;
) xsgn, %),
(D gln+1,2)cgln, 1),
(iii) if a sequence {x,} converges to a unique point x, then

N &G, <x;2,>)=<x;%,>,

Here, we use the notation that
- &nD=U{g(ns) :s&§}

for every subset S of X.

A space is said to be cs-semistratifiable if X has a cs-semistratificaticn. A cs-semistra-
tification g is a semistratification [6] if g satisfies the following condition:

™ F=n{gn F) :n=1,2,--} for every closed subset F of X.

Theorem 1. If g: NXX—G is a COC-function, then the followings are equivalent:

D nglnglnx))={x}.

@) If A is a compact subset of X, them Nngln, A)=A



3 If (x)>x0.and A={x} U {x, : neN}, then ngln, A)=A

Proof (1)=>(2)

Let A be a compact subset of X and xeX—A. Since Ngln,gln p))={p} for each peX,
there is meN such that g(m, g(m,p))eX— (v} for each peA. Since {g(n,p)) : p=A} isan
open covering of A, there are p,,b,, -, p, such that Acg(n, pOUgln, p.d U - Uglm,, pi).
Let n=max {m; : 1<¢{<A}. Suppose that there is p=A such that x€g(n, p), there is (1<
<k) such that pegin, p.). It follows that xeg(n;,g(n;,p,). Hence this is contradict to
g(n, g(n, p))=1p}. Therefore x&g(n,p) and g(n, A)=U {gln, a) : acA) =A.

@=>3

Since A= {x,} U {x,: neN} is a compact, the statement is clear.

@=>

Let {g(#n,%) : neN} be a nested local base at each x€X and if {x,}—x, and A= {x;} U [z,
:i€N}, then N {g(#, A) : neN} =A. Suppose that there are x,y(#)eX such that yen
{g(n, g(n,x)) : n&N}, then there exists a sequence {x,} such that yeg(n, x,) and x,€g(#, x)
for each neN. Then ({x,}—x and there exists a subsequence {x;) converging to x and
having no term equal to y. Set A= {x} U {x;, : n&N}. Then there exists n=N such that y&
g(n, A). In particular, since gQ,, ¥.,) € g(i,, A) cg(n, A), y& (i,, x:.). Therefore y=x and hence
N {g(n, g(n, x)) : neN} = {a}.

Definition A topological space X is developable(mod K) if G={G,:i€N} where &, .is
an open covering of X for each natural number i and for each xeX, if xeKe g(whereH
is a compact covering) and K is contained in an open set V, then there is a natural number
n(x) such that st(x, G.c,)CSV. A regular developable (mod K) space is called a Moore
(mod K) space and @ is called a development (mod K) for X.

Definition A topological space X is a wd-space if there is a sequence G,, G, *+ of open
coverings of X such that, for edch x in X, if x,est(x, ¢,) for n=1,2, -+, then the sequence
{x.} has a cluster point.

Theorem 2. Let X be a regular space. If X is a developable(mod K) space, then X is a
wd-space.

Using the above theorem, the following theorem can be derived.

Theorem 3. In a regular space X, the followings are equivalent:

(1) X is a developable space

(2) X is a developable(mod K) and cs-semistratifiable space.

Proof (1)=>(2) clear.

(2)=>(1) Since a regular developable(mod K) space is a wA-space, a regular cs-semistra-
tifiable wA-space is a developable space from [1].

Corollary 4. A regular compact cs-semistratifiable space is metrizable.
Proof Since a compact space is a developable(mod K) space and a cs-semistratifiable and
developable(mod K) space is a developable space. From [7], it is clear that X is metrizable.
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