On Metrizability of Topological Spaces by Heung Ki Kim

Kang Won National University, Chun Cheon, Korea.

In [1], it was shown that a regular space is metrizable if and only if it is cs-semistratifiable and $w\Delta$ -space. Also, in [2], H. R. Bennett and H. W. Martin have shown that a regular space X is a Moore space if and only if X is a c-semistratifiable space and a Moore (mod K) space. And by S. Y. Choi and Y. S. Kim [3], a developable (mod K) T_1 -space is $w\Delta$ -space.

Here, a cs-stratifiable space will be characterized and will be shown that a regular and compact cs-semistratifiable space is metrizable. In this paper all spaces are assumed to be a T₂-space and all undefined terms and notions may be found in [8].

Definition Let (X, \mathfrak{T}) be a topological space and let g be a function from $N \times X$ to \mathfrak{T} . Then g is called a *COC-function* for X if it satisfies the following two conditions:

- (i) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for all $x \in X$,
- (ii) $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$ and $x \in \mathbb{X}$.

We adopt the convention that if $\{x_n\}$ is a sequence, $\langle x_n \rangle$ denotes the range of the sequence $\{x_n\}$ and $\langle x; x_n \rangle$ denotes $\{x\} \cup \langle x_n \rangle$.

Definition A cs-semistratification for a topological space X is a mapping g from $N \times X$ to the topology of X which satisfies the following conditions:

- (i) $x \in g(n,x)$,
- (ii) $g(n+1,x)\subset g(n,x)$,
- (iii) if a sequence $\{x_n\}$ converges to a unique point x, then

$$\bigcap_{i=1}^{\infty} g(i, \langle x; x_n \rangle) = \langle x; x_n \rangle,$$

Here, we use the notation that

$$g(n,s) = \bigcup \{g(n,s) : s \in S\}$$

for every subset S of X.

A space is said to be *cs-semistratifiable* if X has a cs-semistratification. A cs-semistratification g is a semistratification [6] if g satisfies the following condition:

(*) $F = \bigcap \{g(n, F) : n=1, 2, \dots\}$ for every closed subset F of X.

Theorem 1. If $g: N \times X \rightarrow \mathfrak{T}$ is a COC-function, then the followings are equivalent:

- (1) $\cap g(n,g(n,x)) = \{x\}.$
- (2) If A is a compact subset of X, then $\bigcap g(n, A) = A$

(3) If $\{x_n\} \to x_0$ and $A = \{x_0\} \cup \{x_n : n \in N\}$, then $\cap g(n, A) = A$ Proof $\{1\} \Rightarrow \{2\}$

Let A be a compact subset of X and $x \in X - A$. Since $\bigcap g(n, g(n, p)) = \{p\}$ for each $p \in X$, there is $m \in \mathbb{N}$ such that $g(m, g(m, p)) \in X - \{x\}$ for each $p \in A$. Since $\{g(n, p)\} : p \in A\}$ is an open covering of A, there are p_1, p_2, \dots, p_k such that $A \subset g(n_1, p_1) \cup g(n_2, p_2) \cup \dots \cup g(n_k, p_k)$. Let $n = \max\{n_i : 1 \le i \le k\}$. Suppose that there is $p \in A$ such that $x \in g(n, p)$, there is $i(1 \le i \le k)$ such that $p \in g(n_i, p_i)$. It follows that $x \in g(n_i, g(n_i, p_i))$. Hence this is contradict to $g(n_i, g(n_i, p_i)) = \{p_i\}$. Therefore $x \in g(n, p)$ and $g(n, A) = \bigcup \{g(n, a) : a \in A\} = A$.

 $(2) \Rightarrow (3)$

Since $A = \{x_0\} \cup \{x_n : n \in \mathbb{N}\}\$ is a compact, the statement is clear.

 $(3) \Rightarrow (1)$

Let $\{g(n,x):n\in\mathbb{N}\}$ be a nested local base at each $x\in X$ and if $\{x_n\}\to x_0$ and $A=\{x_0\}\cup\{x_i:i\in\mathbb{N}\}$, then $\cap\{g(n,A):n\in\mathbb{N}\}=A$. Suppose that there are $x,y(\neq)\in X$ such that $y\in \cap\{g(n,g(n,x)):n\in\mathbb{N}\}$, then there exists a sequence $\{x_n\}$ such that $y\in g(n,x_n)$ and $x_n\in g(n,x)$ for each $n\in\mathbb{N}$. Then $\{x_n\}\to x$ and there exists a subsequence $\{x_i\}$ converging to x and having no term equal to y. Set $A=\{x\}\cup\{x_{i_n}:n\in\mathbb{N}\}$. Then there exists $n\in\mathbb{N}$ such that $y\in g(n,A)$. In particular, since $g(i_n,x_{i_n})\subset g(i_n,A)\subset g(n,A)$, $y\in (i_n,x_{i_n})$. Therefore y=x and hence $\cap\{g(n,g(n,x)):n\in\mathbb{N}\}=\{x\}$.

Definition A topological space X is $developable(mod\ K)$ if $\mathcal{G} = \{\mathcal{G}_i : i \in \mathbb{N}\}$ where \mathcal{G}_i is an open covering of X for each natural number i and for each $x \in X$, if $x \in K \in \mathcal{H}(where \mathcal{H})$ is a compact covering) and K is contained in an open set V, then there is a natural number n(x) such that $st(x, \mathcal{G}_{n(x)}) \subset V$. A regular developable (mod K) space is called a *Moore* (mod K) space and \mathcal{G} is called a *development* (mod K) for X.

Definition A topological space X is a $w\Delta$ -space if there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \cdots$ of open coverings of X such that, for each x in X, if $x_n \in st(x, \mathcal{G}_n)$ for $n=1, 2, \cdots$, then the sequence $\{x_n\}$ has a cluster point.

Theorem 2. Let X be a regular space. If X is a developable $(mod\ K)$ space, then X is a $w\Delta$ -space.

Using the above theorem, the following theorem can be derived.

Theorem 3. In a regular space X, the followings are equivalent:

- (1) X is a developable space
- (2) X is a developable (mod K) and cs-semistratifiable space.

Proof $(1) \Rightarrow (2)$ clear.

(2) \Rightarrow (1) Since a regular developable(mod K) space is a w Δ -space, a regular cs-semistratifiable w Δ -space is a developable space from [1].

Corollary 4. A regular compact cs-semistratifiable space is metrizable.

Proof Since a compact space is a developable (mod K) space and a cs-semistratifiable and developable (mod K) space is a developable space. From [7], it is clear that X is metrizable.

References

- [1] H.K. Kim(1974), Metrizability of wM-spaces, J. of the Korea Math. Ed., vol. 13, 24-26.
- [2] H.R. Bennett and H.W. Martin(1975), A note on certain spaces with bases (mod K), Can. J. Math., vol. 57, 469-474.
- [3] S. Y. Choi and Y. S. Kim(1976), On semi-developable(mod K) spaces, J. of the Science Education Center, Seoul National Univ., no. 2, 77-83.
- [4] H. W. Martin(1973), Metrizability of M-spaces, Can. J. Math., vol. 35, 840-841.
- [5] R. E. Hodel (1971), Moore spaces and wΔ-space, Pac. J. Math., vol. 38, 641-652.
- [6] G. Creede(1970), Concerning semistratifiable spaces, Pac. J. Math., vol. 32, 47-54.
- [7] R. H. Bing(1951). Metrization of topological spaces, Can. J. Math., vol. 3, 175-186.
- [8] J. Kelly(1955), General Topology, Van Nostrand.