On the Relationship between Two Connections in n-dimensional *g-UFT

By Hyun Woo Lee

Yonsei University, Seoul, Korea

I. Introduction

A. n-dimensional *g'-unified field theory

In the usual Einstein's unified field theory the generalized *n*-dimensional Riemannian space X_n is endowed with a real non-symmetric tensor $g_{\lambda p}$ which may be split into its symmetric part $h_{\lambda p}$ and its skew-symmetric part $k_{\lambda p}$:

$$(1.1) g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where

$$\operatorname{Det}(g_{\lambda\rho}) \neq 0$$
, $\operatorname{Det}(h_{\lambda\rho}) \neq 0$.

On the other hand, Einstein's $*g^{\lambda \nu}$ -unified field theory (*g-UFT) in the same space X_n is defined to be based upon the basic real tensor $*g^{\lambda \nu}$ defined by

$$(1.2) g_{\lambda\mu} * g^{\lambda\nu} = \delta_{\mu}.$$

It may also be decomposed into its symmetric part $h^{2\nu}$ and its skew-symmetric part $k^{2\nu}$:

$$(1.3) *g^{\lambda^{\nu}} = *h^{\lambda^{\nu}} + *k^{\lambda^{\nu}}.$$

Since Det $(*h^{2}) \neq 0$, we may define an unique tensor $*h_{\lambda n}$ by

$$(1,4) *h_{ia}*h^{i}=\delta_{a}".$$

In our *g-UFT we use both * $h_{\lambda\mu}$ and * $h^{\lambda\nu}$, instead of $h_{\lambda\mu}$ and $h^{\lambda\nu}$, as the tensors for raising and/or lowering indices of all tensors defined in X_n in the usual manner, with the exception of the tensors $g_{\lambda\mu}$, $h_{\lambda\mu}$, and $h_{\lambda\mu}$ in order to avoid the notational confusion. We then have, for example,

(1.5) a
$$*k_{\lambda\mu} = *k^{\rho\sigma} *h_{\lambda\rho} *h_{\mu\sigma}, *g_{\lambda\mu} = *g^{\rho\sigma} *h_{\lambda\rho} *h_{\mu\sigma},$$

so that

(1.5) b
$$*g_{\lambda p} = *h_{\lambda p} + *k_{\lambda p}$$
.

The basic connection $\Gamma_{\lambda_{\mu}}^{*}$ in our *g-UFT is given by the following Einstein's equation expressed in terms of * $g^{\lambda_{\mu}}$:

(1.6) a
$$\partial_{\alpha} * g^{\lambda \mu} + \Gamma_{\alpha \omega}^{\lambda} * g^{\alpha \mu} + \Gamma_{\omega \alpha}^{\mu} * g^{\lambda \alpha} = 0,$$

or equivalently

(1.6) b
$$D_{\mu} * g^{\lambda \mu} = -2S_{\alpha \mu} * g^{\lambda \mu},$$

where D_{\bullet} is the symbolic vector of the covariant derivative with respect to $\Gamma_{\lambda_{\sigma}}$ and

$$(1.7) S_{\lambda\mu}{}^{\nu}({}^{\ast}g^{\lambda\nu}) \stackrel{\text{def}}{=} \Gamma_{(\lambda\mu)}^{\nu}.$$

For the convenience of writing we shall make the following agreement in our further considerations:

Agreement (1.1). We omit the notation "*" from all starred tensors and operators in the remaining of the present paper, and understand that they are starred.

B. The problem to be solved

As givenin (1.3) and (1.6), *g-UFT is based on a real tensor

$$(1.3) g^{\lambda^{\nu}} = h^{\lambda^{\nu}} + k^{\lambda^{\nu}}$$

and a real connection $\Gamma_{\lambda\mu}^{\nu}$ which satisfies the field equation

$$\partial_{\alpha}g^{\lambda\mu} + \Gamma^{\lambda}_{\alpha\alpha}g^{\alpha\mu} + \Gamma^{\mu}_{\alpha\alpha}g^{\lambda\alpha} = 0.$$

Consider another unified field theory based on a real tensor

$$(1.8) \qquad \bar{g}^{\lambda\nu} \stackrel{\text{df}}{=} \bar{h}^{\lambda\nu} + \bar{k}^{\lambda\nu} \stackrel{\text{df}}{=} h^{\lambda\nu} - k^{\lambda\nu}; \; \bar{h}^{\lambda\nu} = \bar{h}^{(\lambda\nu)}, \; \bar{k}^{\lambda\nu} = \bar{k}^{(\lambda\nu)},$$

and a real connection $\overline{\Gamma}_{a}^{*}$ which satisfies

(1.9)
$$\partial_{\alpha}\overline{g}^{\lambda\mu} + \overline{\Gamma}^{\lambda}_{\alpha\alpha}\overline{g}^{\alpha\mu} + \overline{\Gamma}^{\mu}_{\alpha\alpha}\overline{g}^{\lambda\alpha} = 0.$$

The main purpose of the present paper is to find the relationship between $\Gamma_{\lambda\mu}$ given by (1.6) and $\bar{\Gamma}_{\lambda\mu}$ given by (1.9).

II. Preliminary results

In this chapter some results which are essential to the present paper will be briefly stated without proofs. The detailed proofs are given in [1].

The following tensors will be used in our further considerations:

(2.1) a
$${}^{(0)}k_{1}^{\nu} \stackrel{\text{df}}{=} \delta_{1}^{\nu}, {}^{(1)}k_{1}^{\nu} \stackrel{\text{df}}{=} k_{1}^{\nu}, {}^{(p)}k_{1}^{\nu} \stackrel{\text{df}}{=} {}^{(p-1)}k_{1}^{\nu}k_{2}^{\nu}.$$

(2.1) b
$$A_{\alpha\mu\nu}^{\rho\sigma} \stackrel{\text{df}}{=} {}^{(\rho)}k_{\alpha}^{\alpha(\theta)}k_{\mu}^{\beta(r)}k_{r}^{r},$$

$$(2.1) c \qquad \qquad 2 \stackrel{(pq)r}{A_{\omega\mu\nu}} \stackrel{ef}{=} \stackrel{qr}{A_{\omega\mu\nu}} + \stackrel{pqr}{A_{\omega\mu\nu}} + \stackrel{pqr}{A_{\omega\mu\nu}} \stackrel{(pq)r}{=} \stackrel{ef}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{qpr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{qpr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel{qpr}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel{pqr}{A_{\omega\mu\nu}} \stackrel{pqr}{=} \stackrel$$

Also, denoting the tensor $T_{\omega\mu\nu}$ by T, the following abbreviations will be used:

$$(2.2) a \qquad \qquad \stackrel{per}{T} \stackrel{df}{=} \stackrel{per}{T}_{\alpha\mu\nu} \stackrel{df}{=} \stackrel{per}{A}_{\alpha\mu\nu}^{a\beta\gamma} T_{\alpha\beta\gamma},$$

$$(2.2) b T \stackrel{\text{df}}{=} T_{\bullet \mu \nu} \stackrel{\text{df}}{=} \widetilde{T}.$$

The connection $\Gamma_{\lambda\mu}^*$ defined by (1.6) is given by

(2.3)
$$\Gamma_{\lambda\mu}^{\nu} = \begin{Bmatrix} \nu \\ \lambda\mu \end{Bmatrix} + S_{\lambda\mu}^{\nu} + U_{\lambda\mu}^{\nu}$$

where $\begin{Bmatrix} \nu \\ \lambda u \end{Bmatrix}$ are the Christoffel symbols defined by $h_{\lambda \mu}$ in the usual way and

$$U_{\nu\lambda\rho} \stackrel{\text{(10)0}}{=} S_{(\lambda\rho)\nu} + 2 S_{\nu(\lambda\rho)\nu}^{(10)0}$$

The system of equations (1.6) is equaivalent to

$$(2.5) S_{\alpha\beta\gamma}X_{\alpha\mu\nu}^{\alpha\beta\gamma} = B_{\alpha\beta\gamma},$$

where

$$X_{\text{equy}}^{a\beta\gamma} \stackrel{\text{df}}{=} A_{(\text{equ})\nu}^{(\alpha\beta)\gamma} + A_{(\text{equ})\nu}^{(a\beta)\gamma} + 2A_{(\text{equ})\nu}^{(\alpha\beta)\gamma}$$

$$(2.7) B_{\alpha\mu\nu} \stackrel{\text{df}}{=} \frac{1}{2} (K_{\alpha\mu\nu} + 3K_{\alpha(\mu\beta}k_{\alpha)}{}^{\alpha}k_{\nu}{}^{\beta}),$$

$$(2.8) K_{\omega\mu\nu} \stackrel{\text{df}}{=} \nabla_{\omega} k_{\lambda\mu} + \nabla_{\mu} k_{\omega\lambda} + \nabla_{\lambda} k_{\omega\mu}.$$

Here ∇_{\bullet} is the symbolic vector of the covariant derivative with respect to $\begin{pmatrix} \nu \\ \lambda \mu \end{pmatrix}$.

III. Main theorem

The first consequences of (1.3), (1.8), (2.6), (2.7), and (2.8) are formally stated in the

following two lemmas:

Lemma (3.1). We have

$$(3.1) a \qquad \overline{h}^{\lambda\nu} = \overline{h}^{\lambda\nu}, \ \overline{h}_{\lambda\mu} = h_{\lambda\mu},$$

$$(3.1) b \qquad \qquad \overline{k}^{\lambda\nu} = -k^{\lambda\nu}, \ \overline{k}_{1\mu} = -k_{1\mu}, \ \overline{k}_{1}^{\nu} = -k_{1}^{\nu},$$

$$(3.1) c \qquad \overline{g}^{\lambda \nu} = g^{\nu \lambda}, \ \overline{g}_{\lambda \nu} = g_{\nu \lambda}.$$

Lemma(3.2). We have

$$(3.2) a \bar{K}_{\nu\nu\rho} = -K_{\nu\rho\nu}$$

$$(3.2) b \qquad \bar{B}_{\omega\mu\nu} = -B_{\omega\mu\nu},$$

$$(3.2) c X_{\omega\mu\nu}^{\alpha\beta\gamma} = X_{\omega\mu\nu}^{\alpha\beta\gamma}.$$

Proof. (3.1) are direct consequences of the definition of $\overline{g}^{\lambda\mu}$ (3.2) follow from (2.6), (2.7), and (2.8) using (2.1) and (3.1)b.

Finally, we have the following main theorem which states that the connection $\overline{\Gamma}_{\lambda_{\mu}}^{\nu}$ is pseudo-Hermitian symmetric in the inidces λ, μ .

Theorem (3.3). If the system (1.6) admits aunique solution, then we have the following relation:

$$\overline{\Gamma}_{\lambda\mu}^{\nu} = \Gamma_{\lambda\mu}^{\nu}.$$

Proof. Assume that (1.6) has a unique solution. Then $\Gamma_{\lambda_{\mu}}$ is expressed as a function of $g^{\lambda^{\nu}}$. Observing (1.6) and (1.9), we see that $\overline{\Gamma_{\lambda_{\mu}}}$ is the same function of $\overline{g}^{\lambda^{\nu}}$. Hence, comparing (2.5) with

$$\bar{S}_{\alpha\beta\tau} \bar{X}_{\alpha\mu\nu}^{\alpha\beta\tau} = \bar{B}_{\alpha\mu\nu}$$

which is equivalent to (1.9), and using (3.2), we have

$$\bar{S}_{\alpha\mu\nu} = -S_{\alpha\mu\nu} = S_{\alpha\mu\nu}$$

so that

according to (2.1), (2.2), (2.4), (3.1), and (3.5). On the other hand, we have

(3.7)
$$\left\{ \begin{array}{c} \bar{\nu} \\ \lambda \mu \end{array} \right\} = \left\{ \begin{array}{c} \nu \\ \lambda \mu \end{array} \right\} = \left\{ \begin{array}{c} \nu \\ \mu \lambda \end{array} \right\}$$

in virtue of (3.1)a. Hence, according to (2.3),

$$\overline{\varGamma}_{\lambda\mu}^{\nu} = \left\langle \overline{\lambda}_{\mu}^{\nu} \right\rangle + \overline{S}_{\lambda\mu}^{\nu} + \overline{U}_{\lambda\mu}^{\nu} = \left\langle \overline{\mu}_{\lambda}^{\nu} \right\rangle + S_{\mu\lambda}^{\nu} + U_{\mu\lambda}^{\nu} = \varGamma_{\mu\lambda}^{\nu}.$$

References

- [1] K.T. Chung (1963), Einstein's connection in terms of *g*, Il Nuovo Cimento, (X)27, 1297-1324.
- [2] V. Hlavatý (1957), Geometry of Einstein's unified field theory, P. Noordhoff Ltd, Groningen.