Categorical Homotopy

By Yong-Seung Cho

Kyungpook National University, TaeGu, Korea

Let $\mathscr C$ be an arbitrary category, and $\mathscr M$ be any family of its morphisms. It is known that there is a category $\mathscr C/\mathscr M$ by Gabriel-Zisman. And the category $\mathscr C/\mathscr M$ has the same objects as $\mathscr C$, and a covariant functor $\eta:\mathscr C\longrightarrow\mathscr C/\mathscr M$ which is the identity on object, such that, $\eta(f)$ is invertible in $\mathscr C/\mathscr M$ for each $f\in\mathscr M$.

We will use each class \mathcal{M} to determine a notion of homotopy in $\boldsymbol{\delta}$. In the category Top, a suitable choice of \mathcal{M} determines the usual homotopy.

Definition. Let $\mathscr C$ be any category, and let $\mathscr M$ be any family of its morphisms. By a quotient category we shall mean a pair $(\mathscr C/\mathscr M,\eta)$ where $\mathscr C/\mathscr M$ is a category with the same objects as $\mathscr C$ and $\eta:\mathscr C\longrightarrow\mathscr C/\mathscr M$ is a covariant functor that preserves objects, having the following two properties.

- (1) If $\alpha \in \mathcal{M}$, then $\eta(\alpha)$ is invertible in θ/\mathcal{M} .
- (2) If $T: \theta \longrightarrow \mathfrak{D}$ is any covariant functor to any category \mathfrak{D} such that $T(\alpha)$ is invertible for each $\alpha \in \mathcal{M}$, then there is a unique covariant functor $H: \theta/\mathcal{M} \longrightarrow \mathfrak{D}$ such that $T=H \circ n$.

Theorem 1. Let 6 be any category, and let \mathcal{M} be any family of its morphisms. Then a quotient category $(6/\mathcal{M}, n)$ exists.

Definition Let $R: \theta \longrightarrow \mathcal{D}$ be a covariant functor. For $f, g \in Hom_{\ell}(X, Y)$ f and g are R-homotophic (written $f \stackrel{R}{\sim} g$) if R(f) = R(g).

Definition. A morphism $f: X \longrightarrow Y$ in a category δ is called *constant* if for each object $Z \in Ob\delta$, and for each pair of morphisms $g, h: Z \longrightarrow X$ it follows that fg=fh.

Definition: A category θ is a category with constant morphisms if for each pair (X, Y) in θ , there is a constant morphism in Hom(X, Y).

Now we have some consequences.

Theorem 2. Let $R: \mathscr{C} \longrightarrow \mathscr{D}$ be a covariant functor. Then

- (1) R-homotopy is an equivalence relation in each Hom_e(X, Y).
- (2) If $f_0 \stackrel{R}{\sim} f_1$ in $\text{Hom}_{\delta}(X, Y)$, for each $h \in \text{Hom}_{\delta}(Z, X)$, $g \in \text{Hom}_{\delta}(Y, W)$, then $f_0 h \stackrel{R}{\sim} f_1 h$, $g f_0 \stackrel{R}{\sim} g f_1$.
- (3) If $f: X \longrightarrow Y$ is isomorphism, then f is an R-homotophic equivalence.

Theorem 3. Let θ be a category and $(\theta/M, \eta)$ a quotient category.

- (1) If \mathfrak{M} is the class of all monomorphisms in θ and if $N \xrightarrow{v} X \xrightarrow{f} Y$ is exact in, then $f \stackrel{\eta}{\sim} g$.
- (2) If \mathcal{M} is the class of all epimorpisms in θ and if $X \xrightarrow{f} Y \xrightarrow{u} Z$ is exact in θ , then $f \sim g$.

Proof It is obvious.

Theorem 4. Let $R: \mathcal{C} \longrightarrow \mathcal{D}$ be a covariant functor, and $\mathcal{M} = \{f | R(f) : isomorphism \ in \ \mathcal{D}\}\$ and let $(\mathcal{C}/\mathcal{M}, \eta)$ be a quotient category of \mathcal{C} . Then η -homotopy implies R-homotopy.

Proof There is a unique covariant functor $H: \mathcal{O}/\mathcal{M} \longrightarrow \mathcal{D}$ such that $R=H \circ \eta$. Let $f \sim^{\eta} g$, then $R(f)=H_{\eta}(g)=R(g)$.

Thus we have $f \sim g$.

Remark: In Theorem 3, if the covariant functor $H: \theta/\mathcal{M} \longrightarrow \mathcal{D}$ is a faithful functor, then R-homotopy implies η -homotopy.

Theorem 5. Let θ be a category with constant morphisms, and let \mathcal{M} be the class of all constant morphisms in θ , and $(\theta/\mathcal{M}, \eta)$ be a quotient category of θ . Then

- (1) If $f, g: X \longrightarrow Y$ are morphisms in \mathcal{C} , then $f \sim g$.
- (2) If $f: X \longrightarrow Y$ is a morphism in θ and $Hom_{\theta}(Y, X) \neq \phi$, then f is η -homotopy equivalence.

Theorem 6. Let θ be category with constant morphisms and let \mathcal{M} be the class of constant morphims. If $\operatorname{Hom}_{\theta}(X,Y) \neq \phi$, $\operatorname{Hom}_{\theta}(Y,X) \neq \phi$, then there is a monoid isomorphism $\varphi: \operatorname{Hom}_{\theta/m}(X,X) \longrightarrow \operatorname{Hom}_{\theta/m}(Y,Y)$ in θ/\mathcal{M} .

Proof Let $f \in \text{Hom } (X, Y)$, $g \in \text{Hom } (Y, X)$. Define $\varphi : \text{Hom } _{\theta/m}(X, X) \longrightarrow \text{Hom } _{\theta/m}(Y, Y)$ by $\varphi(\alpha) = \eta(f)\alpha\eta(g)$ in θ/\mathcal{M} . Then φ is a monoid homomorphism.

Define a homomorphism $\phi : \text{Hom } \epsilon_{\ell_m}(Y,Y) \longrightarrow \text{Hom } \epsilon_{\ell_m}(X,X) \text{ by } \phi(\beta) = \eta(g)\beta\eta(f) \text{ for any } \beta \in \text{Hom } \epsilon_{\ell_m}(Y,Y).$ Then $\phi \varphi(\alpha) = \alpha = 1(\alpha)$ for any $\alpha \in \text{Hom } \epsilon_{\ell_m}(X,X)$.

Similarly $\varphi \phi = 1$. Thus we have $\varphi : \text{Hom } \sigma_{/m}(X, X) \longrightarrow \text{Hom } \sigma_{/m}(Y, Y)$ is a monoid isomorphism.

Theorem 7. In Top, let Top=6. Let \mathcal{M} be all inclusion functions $i: A \longrightarrow X$ and A be deformation retract of X, and $(\mathcal{C}/\mathcal{M}, \eta)$ be a quotient category. Then η -homotopy implies the usual homotopy.

Proof Let \sim be the usual homotopy relation in \mathscr{C} , and let $R:\mathscr{C}\longrightarrow\mathscr{C}/\sim$ be a covariant functor defined by R(A)=A, R(f)=[f], where [f] is the usual homotopic class of f. Let $i:A\longrightarrow X$ be a inclusion and A be a deformation retract of X. Then there is $r:X\longrightarrow A$ a retraction and a continuous function $F:XxI\longrightarrow X$ such that F(x,0)=x=1(x), F(x,1)=r(x)=ri(x).

Therefore $1_x \sim ri$, ir $\sim 1_A$. Thus R(i) is an isomorphism in θ/\sim . There is a unique covariant functor $H: \theta/\mathcal{M} \longrightarrow \theta/\sim$ such that $R=H\circ\eta$. If $f \sim g$, then $R(f)=H\eta(f)=H\eta(g)=R(g)$. Thus f and g are usual homotopic in Top.

Theorom 8. In Top, let Top=6. Let M be the class of all maps r: XxI --- X given by

r(x,t)=x or \mathfrak{M} be the class of all inclusion $i:A\longrightarrow X$ and A is a zero set and a strong deformation retract of X, and let $(6/\mathfrak{M},\eta)$ be a quotient category of 6. Then the η -homotopy coinsides with the usual homotopy.

Remark: In theorem 8, there is a continous map $\phi: X \longrightarrow I$ with $A = \phi^{-1}(0)$.

References

- [1] P. Gabriel and M. Zisman (1967), Calculus of fractions and homotopy theory, Springer-Verlag, New York.
- [2] B. Mitchell (1965), Theory of categories, Academic press, New York.
- [3] F. W. Bauer and J. Dugundji, Categorical homotopy and fibrations.
- [4] S. Maclane (1971), Categories for the Working Mathematician, Springer-Verlag.