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On the fundamental equations of surface theory
By Phil Ung Chung

Yonsei University Seoul, Korea

1. Introduction

The formalism and derivation of the fundamental equations of the surface theory can be
greatly simplified with the use of the tensors and tensor notation. However, this will require
some knowledge of tensor analysis.

The purpose of the present paper is to treat and derive the fundamental equations of the
surface theory using both vectorial method and a little tensorial notations. No new results
are seeked in this paper, but the method and proofs employed and presented here are more
refined, simpler, and somewhat different from the earlier works on the basis that one uses
a little knowledge of tensorial notations.

2. Induced Metrice of the Surface

A surface S may be regarded as a two-dimensional submanifold of there-dimensional
Euclidean space E;. The C"map ¢ : S—E,;, defined by
@.1D X"=x'(u', u?) («=1,2,3),
relates the parameters (u',u®) of a point P of S to the rectangular Cartesian coordinates
(x™) of P referred to a suitable set of axes in E;. (2.1) is precisely the parametric form
of the equations of S.

Agreement. In the present paper, Greek indices are used for the range 1,2,3, and Roman
indices for the range 1,2. Both indices are understood to follow the summation convention.
Let
Q.2 25X X,
where

X;=—a‘x-—, X;= —‘a—-zg_.
aui Ju'ou’
Theorem (2.1). g are the components of the induced metric tensor of S.
Proof. According to the transformation of parameters

@3 w=ui(d, @) (]%—I;eo),

we have
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which together with the definition of g; shows that g; are components of a symmetric

tensor. On the other hand, since the displacement vector dx tangential to S is
dx=x,du’+x,du?,

the element of length ds is given by

2.5) ds’=dx-dx=g;;du'du’.
The positive definiteness of the form (2.5) implies that
(2.6) gl gl #0.

Our assertion follows from (2.4), (2.5), and (2.6).
Remark (2.2). Theorem (2.1) is a natural result from the view-point that S is a two-
dimensional submanifold V,(g;;u’) immersed in a Riemannian E, (J.:;x*) and that g; and

a 8
Oas5 are related by gij=5¢p"g—§;— —-g%—i—, which is another form of (2.2).

It is well known that the quantities
ii ¢« COfactor of g, in g

2.7

@.n g z

are components of a symmetric contravariant tensor and satisfy
2.8 gugt=2a}.

We may use both g and g” as induced metric temsors of S and employ them as temsors
raising and/or lowering the indices of quantities defined in S.

The quantities Qi;, defined by
2.9 Q;EN-x;; {N: Surface normal of S)
are obviously the coefficients of the second fundamental form of S.

Theorem (2.3). s are the components of a symmetric tensor.
Proof. Since x;*N=0, we have according to (2.3)

O N 0 Uk N n— du*_ ou” u* ) du* du
Qu=Xi; N‘“aT(x“'aai ) N“(x“‘ U TN aﬁ‘aﬁ') N=Qw e a

which proves our assertion.

3. Fundamental Equations of Surface Theory
In the present section, we shall prove the fundamental equations of surface theory; namel:
Gauss’ equations, the equations of Weingarten, the equation of Gauss, and the equation

of Codazzi.
Firet of all, several notations are introduced. The quantities
G.1)a T & x50 X,
are called the Christoffel symbols of the first kind, and quantities
@B.Db . I T
the Christoffel symbols of the second kind. Using (2.8) we may easily have
G.1)c Tin=T} Zm-

Theorem (38.1). We have
— 60 —
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Proof. The assertion follows easily from (2.2) and (3.1) a.

Riemann symbols of the second kind and of the first kind are defined, respectively, as

3.3 a R & 2 T — 2 T34 TRI% i,
@B.3b Run & 8RR

We know that they are components of tensors.
Now we are ready to prove our main theorem.
Theorem (3.2). We have
(a) Gauss's equations

@. 4) a xiS=F‘i(3xk+QiiN
(b) Equations of Weingarten

CRON Ni=—Q;g'*%
(¢) Equation of Gauss

G4 c Ruiie =i — Qulus

(d) Equations of Codazzi

aa%;’ —%91;3“—=m w1~ TR

Proof of (2)
Since x;, X%, and N are basis on S, we may put
x;=Akx,+BuN.
Multiplying N scalarly, we have
Bi=x;;-N=Q.
Multiplying x. scalarly again, we have
Xii Xn=AL(Xy Xp) = Tijn=Akgn = Al=T1,.
These complete our proof of (3.4) a.
Proof of (b)
Since N-N=1, we have
N-N;=0 == N,=bix, = N;*x;=bl(x,* x;) => blgii=—Qu.
In the last step, we used the fact that N-x;=0 implies
N.'x;+N-x;=0. Now, multiplying both sides of the last result by g™ and using (2.8), we
have
r=—0,g",
which proves our assertion (3.4) b.
Proof of (3.4) ¢, d
Differentiating both sides of (8.4) a with respect to u* and using (3.4)a,b, we have

ouk

* i = o T+ T (X Q)+ S N =001 X,

If we subtract (*) from the similar equation for x,;, which may be obtained from (*)
by interchanging j and k throughout, and eliminate x;;, the resulting equation is reducible



by means of (3.3) a to

™D RRu— Qa0+ Qg™ ~N(Ehe - B g0, 10,0 =0.

Since x, and N are linearly independent, the coefficients of (**¥) are all zero. Hence we
have proved (3.4) c,d.
Remark (3.3). According to Gauss’s notation
g:=E, gi.=g.=F, g.=G;

11=_G_ 12 21____.___F_ 32=,._Fi~ — —F2y.
(3.5) gl=—- g'=¢g g = (g=EG-F?;

Qu=e, Qu=Q,=f, Q,=g.
Using (3.5), the fundamental equations can be reduced to the familiar form
(a) Gauss's equations
Xu=Ix;+Thx, +eN
(3.6) a Xoo=T0x,+TLx, +IN
X2 =T5X,+Thx, +gN
(b) Weingarten’s equations

(3. 6) b Nl__ fFEEG X1+ eF;fF Xz
N,= gF;fG X, + fF;gE %
(c) Equation of Gauss
(3.6) ¢ Ry=eg~—f*
(d) Equations of Codazzi
3.6) d B~ el £Th-Th) —eTh
B~ 78 —ery+ (T -Th) gl
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