On A Semitopological Semigroup

by Young In Kwon

Gyeong Sang National University, Jinju, Korea

1. Introduction

In this paper I investigated some properties of translational hull of a semigroup.

If S is a semigroup, then a function $\lambda: S \longrightarrow S$ is a *left translation* of S if, for all $x, y \in S$, $\lambda(xy) = (\lambda x)y$ and a function $\rho: S \longrightarrow S$ is a *right translation* of S if, for all $x, y \in S$, $(xy)\rho = x(y\rho)$. A left translation λ and a right translation ρ are said to be *linked* if $x(\lambda y) = (x\rho)y$, for all $x, y \in S$ and the linked pair (λ, ρ) is called a *bitranslation* of S. If $\omega = (\lambda, \rho)$ is a bitranslation of S and $a \in S$, then we denote ω $a = \lambda a$ and $a\omega = a\rho$.

For $x,y \in S$ we have $\omega(xy) = (\omega x)y$, $(xy)\omega = x(y\omega)$, and $x(\omega y) = (x\omega)y$. Clearly $\Lambda(S)$ and P(S) of all left and right translations of S, respectively, are semigroups with respect to composition of functions and $\Omega(S)$ is a subsemigroup of $\Lambda(S) \times P(S)$. The semigroup $\Omega(S)$ is called the *translational hull* of S.

If a semigroup S is endowed with a topology and $\omega = (\lambda, \rho)$ is a bitranslation of S, ω is a continuous bitranslation if λ and ρ are both continuous. For each $a \in S$, we use $\lambda_a(\rho_a)$ to denote the left (right) translation $x \longrightarrow ax(x \longrightarrow xa)$. Then λ_a and ρ_a are linked for each $a \in S$, and hence $\omega_a = (\lambda_a, \rho_a)$ is a bitranslation of S. For $a \in S$, the translations λ_a and ρ_a are called inner left and inner right translations respectively and ω_a is called an inner bitranslation.

The set $\pi(S)$ of all inner bitranslation of S is a subsemigroup of $\Omega(S)$ and the function $\pi: S \longrightarrow \pi(S)$ defined by $\pi(a) = \omega_a$ is a homomorphism. The semigroup $\pi(S)$ is called the *inner translational hull* of S and the homomorphism π is called the *canonical homomorphism*. Let $\Lambda_p(S)$ and $P_p(S)$ are denoted by the semigroups $\Lambda(S)$ and P(S), respectively, endowed with the relative topology of pointwise convergence on S' and $\Omega_p(S)$ be the semigroup $\Omega(S)$ with the product topology on $\Lambda_p(S) \times P_p(S)$. Also, $\Omega_p(S)$ be the semigroup $\Omega(S)$ with the topology of continuous convergence. A semigroup S is said to *act* on a set X if there exists a function $\pi: X \times S \longrightarrow X$ (X is a topological space) satisfying $\pi(x, st) = \pi(\pi(x, s), t)$ for all $s, t \in S$, $x \in X$.

Let $\pi(x, s) = xs$. The function π is called a (left) action of S on X.

2. Translational hull

A semigroup on a Hausdorff space is called a *semitopological semigroup* if multiplication is separately continuous, and is called a *topological semigroup* if multiplication is jointly continuous.

Lemma 2.1 ([2]) Let S be a semitopological semigroup. Then the canonical homomorphism $\pi: S \longrightarrow \Omega_p(S)$ is continuous.

Lemma 2.2 ([2]) Let S be a semigroup on a topological space. Then the multiplication of $\Omega_c(S)$ is continuous.

A semigroup S is said to be *left* (right) reductive if xa=xb (ax=bx) for all $x\in S$ implies a=b, and is said to be reductive if S is both left and right reductive. A semitopological semigroup S is said to be *left* (right) net reductive if $xa_a \longrightarrow xa$ ($a_a x \longrightarrow ax$) for all $x\in S$ implies that $a_a \longrightarrow a$, and S is said to be net reductive if S is both left and right net reductive. A semitopological semigroup S is said to be *left* (right) bi-net reductive if for a net a_a in S and $a\in S$, the condition that $x_ia_a \longrightarrow xa$ ($a_ax_i \longrightarrow ax$) for $x_i \longrightarrow x$ in S implies $a_a \longrightarrow a$.

And S is said to be bi-net reductive if S is both left and right bi-net reductive.

Lemma 2.3 ([2]) In a semitopological semigroup S, net reductivity implies bi-net reductivity which in turn implies reductivity.

Theorem 2.4 Let S bw a semitopological semigroup. Then the canonical homomorphism $\pi: S \longrightarrow \Omega_p(S)$ is both an isomorphism and a homeomorphism if and only if S is net reductive. Proof. Suppose S be a semitopological semigroup which is net reductive. By Lemma 2.1, $\pi: S \longrightarrow \Omega_p(S)$ is a continuous homomorphism. From Lemma 2.3, S is bi-net reductive and hence is monomorphism. Suppose now that a_α is a net in S such that $xa_\alpha \longrightarrow xa$ for all $x \in S$ and $a \in S$. For constant net $x_\beta = x$, $x_\beta a_\alpha \longrightarrow xa$. By bi-net reductivity, a_α converges to a. It follows that $\pi^{-1}: \pi(S) \longrightarrow S$ is continuous $(\pi(S))$ with the reductive topology of $\Omega_p(S)$ and π is a homeomorphism into $\Omega_p(S)$.

Conversely suppose that $\pi: S \longrightarrow \Omega_p(S)$ is a homeomorphism. And suppose that a_{α} is a net in S, $a \in S$ such that $xa_{\alpha} \longrightarrow xa$ for all $x \in S$. By definition of the topology of $\Omega_p(S)$, $\lambda_{\alpha}(a_{\alpha}) \longrightarrow \lambda_{\alpha}(a)$ in $\Omega_p(S)$. Since π is a homeomorphism, we have $a_{\alpha} \longrightarrow a$. Similarly for the right.

Theorem 2.5 Each bitranslation of a bi-net reductive semitopological semigroup S is continuous. Proof. Let ω be a bitranslation and let y_a be a net in S converging to y. Then for each $x_b \longrightarrow x$ in S, $x_b(\omega y_a) \longrightarrow (x_w)yx(\omega y)$. Since S is bi-net reductive and for $x_b \longrightarrow x$ in S, $x_b(\omega y_a) \longrightarrow y_w$. Hence ω is continuous.

Theorem 2.6 Let S be a compact net reductive semitopological semigroup. Then $\Omega_{c}(S)$ is a compact topological semigroup.

Proof. $\Omega(S)$ is embedded in $\pi\{S \times S\}_{a \in S}$ by $\omega \longrightarrow (\omega a, a\omega)$ in the a-th coordinate for each $a \in S$. We have to show that $\Omega(S)$ embedded is a closed subset of $\pi\{S \times S\}_{a \in S}$. Let ω_a be a net in $\Omega(S)$ convergent to an element ω of $\{S \times S\}_{a \in S}$. Let ω be a bifunction by defining ωx to be the first term in the x-th coordinate of $\pi\{S \times S\}_{a \in S}$ and $x\omega$ the second. Let $x, y \in S$. Then $x(\omega y) = x(\lim \omega_a y) = \lim (\omega_a y) = \lim (x\omega_a)y = (\lim x\omega_a)y = (x\omega)y$. Hence ω is a linked pair. Since S is net reductive, ω is a bitranslation of S. In view of Theorem 2.5, ω is continuous and thus $\Omega(S)$ is closed in $\pi\{S \times S\}_{a \in S}$. Therefore $\Omega_c(S)$ is a closed subset of a compact space and hence compact. By Lemma 2.2, multiplication on $\Omega_c(S)$ is continuous. Hence $\Omega_c(S)$ is a topological semigroup.

3. Continuity

A semigroup S on a topological space is a *left* (right) semitopological semigroup if the multiplication function is left (right) continuous. For $x, y \in X$, define $C(x, y) = \{s \in S : xs \neq ys\}$.

Lemma 3.1 ([4]) Let S be a left semitopological semigroup, X a Hausdoroff space and $\pi: X \times S \longrightarrow X$ a left separately continuous action. If for $s \in S$, $x, y \in X$, $y \neq xs$, there exists $r \in C(y, xs)$ such that π is continuous at (x, sr), then there exists open sets U, W, V such that $x \in U$, $s \in W$, $y \in V$ and $\pi(U \times W) \cap V = \phi$.

Theorem 3.2 Let S be a left semitopological semigroup, X a compact Hausdorff space and $\pi: X \times S \longrightarrow X$ a left separately continuous action. Let $(x, s) \in X \times S$. If for each $y \neq xs$, there exists $r \in C(y, xs)$ such that π is continuous at (x, s).

Proof. Let T be an open set containing xs. Then X\T is compact. By Lemma 3.1, each $y \in X \setminus T$, there exist open sets U_v , V_v , W_v such that $x \in U_v$ $s \in V_v$, $y \in W_v$ and $\pi(U_v \times V_v) \cap W_v = \phi$. A finite number of $\{W_v : y \in X \setminus T\}$ cover X\T. Let U be the intersection of the corresponding U_v and V be the intersection of the corresponding V_v . Then U and V are open, $x \in U$, $s \in V$ and $\pi(U \times V) \subset T$.

Theorem 3.3 Let S be a compact Hausdorff left semitopological semigroup with the identity i, X a compact Hausdoroff space, and $\pi: X \times S \longrightarrow X$ a separately continuous action. If u is a unit in S, then π is continuous at (x, s) for all $x \in X$.

Proof. By hypothesis, there exists $u^{-1} \in S$ such that $u^{-1}u = uu^{-1} = i$. Since $ixs = ix(is) = i(xis) \in iX$, $\pi(iX \times S) \subset iX$, and $\pi|_{ix \times S}$ is continuous at (y, u) for all $y \in iX$. Since $ixsu^{-1}u = i(xs)i = xs$, define the composition $X \times S \to iX \times S \to X \to X$ by $(x, s) \to (ix, su^{-1}) \to ixsu^{-1} \to ixsu^{-1}u$. Since the composition $(x, u) \to (ix, uu^{-1}) = (ix, i) \to (ix)i = ix \to ixu = xu$ is continuous, π is continuous at (x, u).

Theorem 3.4 Let S be a locally compact Hausdorff left semitopological semigroup, X a compact metric space and $\pi: X \times S \longrightarrow X$ a separately continuous action. If there exists $s \in S$ such that aS = S and $\pi(S \times s) = X$, then π is continuous at (x, s) for each $x \in X$.

Proof. Let $x \in X$, and suppose $y \neq xs$. There exist open sets U and V such that $y \in U$, $xs \in V$ and $U \cap V = \phi$. By hypothesis, there exists $z \in X$ such that y = zs. Hence there exists open W, $s \in W$ such that $\pi(z \times W) \subset U$. And there exists $t \in W$ such that π is continuous at (x,t). By hypothesis, there exists $t \in S$ such that t = ss.

Then π is continuous at (x, sr). Thus $xsr = xt \in \pi(X \times W) \subset V$ and $yr = zsr = zt \in \pi(z \times W) \subset U$. Hence $yr \neq xsr$. By Theorem 3.2, π is continuous at (x, s).

References

- [1] A. H. Clifford and G. B. Preston (1962), The algebraic theory of semigroups, Vol. 1, Math. Surveys, No. 7 (Amer. Math. Soc., Providence, R. I.,
- [2] J.A. Hildebrant, J.D. Lawson, and D.P. YEAGER (1976), The translational hull of a topological semigroup, *Trans. Amer. Soc.*, Vol. 221, No. 2,

- [3] J. Bergland (1972), Compact connected ordered semitopological semigroups, J. London Math. Soc., Vol. 4, 533-540.
- [4] J.D. Lawson (1974), Joint continuity in semitopological semigroups, *Illinois J. Math.*, 18, 275-285.
- [5] J. E. Ault (1972), Translational hull of an inverse semigroup, Semigroup Forum, 4, 165-168.
- [6] M. Petrich (1970), The translational hull in semigroups and rings, Semigroup Forum, 1, 283-360.