A Study on Two-norm Spaces

By Lee, Kwang Young

Ajou Institute of Technology, SuWon, Korea

The theory of two-norm spaces is a relatively new invention of the Polish school. It has been applied to smmability theory successfully. The purpose of this paper is to study some basic properties of two-norm spaces and Saks spaces, and apply the result to the theory of Banach spaces.

We begin with some definitions given in [1], [2], and [3].

A Frechet norm(F-norm) | | on a linear set X is a real valued nonnegative function with the following properties:

- (1) |x|=0 if and only if x=0,
- (2) $|x+y| \le |x| + |y|$ for all x, y in X,
- (3) if $\{a_n\}$ is a sequence of real numbers converging to a real number a and $\{x_n\}$ is a sequence of points of X with $|x_n-x|\to 0$, then $|a_nx_n-ax|\to 0$.

A B-norm for a linear set X satisfies (1) and (2) of the above definition. But, condition (3) is replaced by

(4) |ax| = |a||x|, where a is any real number and x is any element of X.

Let | | and | | be two (B- or F-)norms defined on X. We define

if $|x_n|_1 \rightarrow 0$ implies $|x_n|_2 \rightarrow 0$.

When $|\cdot|_1 \ge |\cdot|_2$ and $|\cdot|_2 \ge |\cdot|_1$, we say that $|\cdot|_1$ is equivalent to $|\cdot|_2$ and write $|\cdot|_1 \sim |\cdot|_2$.

A two-norm space is a linear set X with two norms, a B-norm $| \cdot |_1$ and an F-norm $| \cdot |_2$. A sequence $\{x_n\}$ of points in a two-norm space $(X, | \cdot |_1, | \cdot |_2)$ is said to be γ -convergent to x in X, written $x_n \xrightarrow{\gamma} x$, if

$$\lim \sup_{n} |x_n|_1 < \infty$$
 and $\lim_{n} |x_n - x|_2 = 0$.

A sequence $\{x_n\}$ in a two-norm space is said to be γ -Cauchy if

$$(x_{p_n}-x_{q_n})\longrightarrow 0$$
 as $p_n, q_n \longrightarrow \infty$.

A two-norm space $X_{\bullet}=(X, |\cdot|_{1}, |\cdot|_{2})$ is called γ -complete if for every γ -Cauchy sequence $\{x_{n}\}$ in X_{\bullet} there exists an x in X_{\bullet} such that $x_{n} \xrightarrow{\gamma} x$.

A 7-linear functional f on a two-norm space is a real valued function on X, such that

- (1) f(ax+by)=af(x)+bf(y), for all real numbers a, b and any x, y in X_{\bullet} ,
- (2) if $x_n \xrightarrow{\tau} x$, then $f(x_n) \longrightarrow f(x)$.

The set of all γ -linear functionals on X, will be denoted by X_* . It is easy to see that X_* is a linear set.

Let X be a linear set and suppose that $| \cdot |_1$ is a B-norm, and $| \cdot |_1$ is an F-norm on X. Let $X_1 = \{x \in X: |x|_1 \le 1\}$ and define

$$d(x,y)=|x-y|^*$$
 for x, y in X_{*}.

Then d is a metric on X_s and the metric space (X_s, d) will be called a Saks set. If (X_s, d) is complete it will be called a Saks space. We shall denote (X_s, d) by $(X_s, |\cdot|_1, |\cdot|^*)$.

A linear functional L_x on $(X_*^*, | |_1^*)$ is defined by $L_x(f) = f(x)$ for each f in X_*^* .

In many cases, it makes no difference whether we work in the setting of Saks sets or that of two-norm spaces. An advantage of working in the setting of a Saks set is that we may use category arguments. A disadvantage is that a Saks set is not a linear set while a two-norm space is a linear set.

We now state a theorem which tells us when weak convergence is equivalent to convergence in the strong topology.

Theorem. Let $(X, | |_X)$ be a Banach space and let $(Y, | |_Y) = (X, | |_X)^*$. Suppose that there exists a Frechet norm $| |_F$ such that the Saks set $Y_* = (Y, | |_Y, | |_F)$ is compact and satisfies (Σ) (see [4]). If Y_*^* contains $\{L_X : X \in X\}$, then weak convergence is equivalent to convergence in the strong topology in $(X, | |_X)$.

Proof. Let $\{x_x\}$ be a sequence in X converging to zero. Then for any given positive real number ε there exists an integer $N(\varepsilon)$ such that

$$|L_{x_n}(y)| < \varepsilon$$
 for all $n < N$,

for each $y \in Y_s = \{y \in Y : |y|_Y \le 1\}$.

Since $x_n \longrightarrow 0$ weakly in X, $y(x_n) \longrightarrow 0$ for each $y \in Y$. Thus

$$L_{x_n}(y) = y(x_n) \longrightarrow 0$$
 for each $y \in Y$.

Since each $L_{x_n} \in Y_{\bullet}^*$ and Y_{\bullet} is complete and satisfies (Σ) , $\{L_{x_n}\}$ is equicontinuous at zero in Y_{\bullet} . Hence given any positive real number ε there exists a positive real number $d(\varepsilon)$ such that if $v \in Y_{\bullet}$ and $|v|_F < d(\varepsilon)$, then $|L_{x_n}(v) < \varepsilon/4$ for each n.

Since $|\cdot|_F$ is an F-norm, given d>0 there exists p such that $0 and <math>|y|_F < p$ implies $|y/2|_F < d$. Moreover, since the metric space Y_* is compact, we can choose a p/2 net, $\{y_k\}_{k=1}^k$, for Y_* such that if $w \in Y_*$, there exists k, $1 \le k \le t$, with $|w-y_k|_F < p/2$. Furthermore, there exists an integer $N(\varepsilon)$ such that for n > N, $|L_{x_0}(y_k)| < \varepsilon/8$, $1 \le k \le t$.

Let x be an arbitrary element in Y_s. Then there exists a k, $1 \le k \le t$, such that $|x-y_k|_F < p/2$. Hence $|(x-y_k)/2|_F < d$. Since $(x-y_k)/2 \in Y_s$, for every n > N, we have

$$|L_{x_n}(x/2)| \le |L_{x_n}((x-y_k)/2)| + |L_{x_n}(y_k)| < \varepsilon/2.$$

Hence, altogether we have

$$|L_{x_n}(x)| < \varepsilon$$
 for each $n > N$.

Since each x was an arbitrary element of Y, this implies that

$$|L_{x_n}|_{x^{**}} < \varepsilon$$
 for each $n > N$.

Thus, $|x_n|_x < \varepsilon$ for each n > N, and this completes the proof of the theorem.

Before we go on further we cite some definitions due to Banach ([6], p. 243). Let $\{X_k\}$ be a sequence of Banach spaces. We define

$$V(\{X_k\}) = \Big\{ \{x_k\} : x_k \in X_k \text{ for each } k, \sum_{k=1}^{\infty} |x_k|_{X_k} < \infty \Big\}.$$

If the vector addition is defined in the usual way, it is a linear set. Moreover, if we let

$$|x|_{V(X_k)} = \sum_{i=1}^{\infty} |x_i|_{X_i}$$
 and $x = \{x_i\}$,

then $(V(\{X_k\}), | |v((X_k\}))$ is a Banach space, and the dual of it is the space $(m(\{X_i^*\}), | |m(\{X_i^*\}))$, where

$$\begin{split} & m(\{X_i^*\}) \! = \! \Big\{ \{x_k\} : x_k \! \in \! X_k^* \text{ for each } k, \text{ } \sup_k \! |x_k|_{X_k} \! < \! \infty \Big\}, \\ & x_{m(\{X_k^*\})} \! = \! \sup_k \! |x_k|_{X_k^{*_*}} \! x \! = \! \{x_k\}. \end{split}$$

We define $(m_s(\{X_k^*\}), d)$ to be the Saks set $(m(\{X_k^*\}), \|\|_m(\{X_k^*\}), \|\|\|_s)$, where

$$\| \{x_k\} \|_{s} = \sum_{i=1}^{\infty} 2^{-i} |x_i|_{X_i^*} / (1 + |x_i|_{X_i^*}).$$

Then it is easy to see that $(m_s(\{X_k^*\}), d)$ satisfies (Σ) .

Theorem. The space $(m_s(\{X_k^*\}), d)$ is a complete metric space, thus it is a Saks space.

Proof. Let $\{x_n\}$, $x_n = \{x_{n,k}\}$, be a Cauchy sequence of points from $m_s(\{X_k^*\})$. Then for each i, $|x_{n,i} - x_{m,i}|_{X_i^*} \longrightarrow 0$ as n, $m \longrightarrow \infty$.

Since X_i^* is complete, we can find $y_i \in X_i^*$ with $|y_i|_{x_i^*} < 1$ such that $|x_{n,i} - y_i|_{x_i^*} \longrightarrow 0$ as $n \longrightarrow \infty$. Hence $y = \{y_i\} \in m_s(\{X_i^*\})$. Since coordinatewise convergence is equivalent to $\|\cdot\|_s$ convergence, we have $\|\cdot\|_s \longrightarrow 0$ as n tends to infinity. Thus the given space is complete.

Theorem. If each Xi* is finite dimensional, then (ms({Xi*}),d) is compact.

Proof. Let $\{X_n\}$, $x_n = \{x_{n,k}\}$, be a sequence of points from $m_s(\{X_k^*\})$. Then $|x_{n,k}|_{X_k^*} \le 1$ for each n, k. X_k^* being a finite dimensional space, we can choose a subsequence $\{x_{nk}\}$ of points from $m_s(\{X_k^*\})$ and a sequence $y = \{y_i\}$ such that $|x_{nk}, -y_i|_{X_i^*} \longrightarrow 0$ as $k \longrightarrow \infty$ for each i (Use Cantor diagonalization method.). Since coordinatewise convergence implies $\|\cdot\|_s$ convergence, we have $\|x_{nk}-y\|_s \longrightarrow 0$ as $k \longrightarrow \infty$.

Since $(m_s(\{X_k^*\}), d)$ is complete by the above theorem, $y = \{y_k\}$ belongs to $m_s(\{X_k^*\})$. Thus $(m_s(\{X_k^*\}), d)$ is compact and the proof is completed.

References

[1] A. Alexiewicz and Z. Semandeni (1959), The Two-norm spaces and their conjugate spaces, Studia Math. 18, 275-293. MR22 #5878.

- [2] A. Alexiewicz and Z. Semandeni (1958), Linear functionals on two-norm spaces, Studia Math. 17, 121-140.
- [3] A. Alexiewicz (1963), The two-norm spaces, Studia Math. Special volumes, 17-20.
- [4] W. Orlicz (1956), Linear operators in Saks spaces (1), Studia Math. 15, 216-224.
- [5] W. Orlicz and V. Ptak (1957), Some remarks on Saks Spaces, *Studia Math.* 16, 56-68. MR20 #1198.
- [6] S. Banach (1965), Theorie des lineaires operations, New York.
- [7] A. Wilansky (1964), Functional Analysis, New York.
- [8] S. Berberian (1973), Lectures in Functional Analysis and Operator Theory, Springer-Verlag, New York.
- [9] P. K. Subramanian (1972), Two-norm spaces and decomposition of Banach Spaces, I, Studia Math, 18, 181-194.