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A Study on Two-norm Spaces
By Lee, Kwang Young
Ajou Institute of Technology, SuWon, Korea

The theory of two-norm spaces is a relatively new invention of the Polish school. It has
been applied to smmability theory successfully. The purpose of this paper is to study some
basic properties of two-norm spaces and Saks spaces, and apply the result to the theory of
Banach spaces.

We begin with some definitions given in [1], {2], and [3].

A Frechet norm(F-norm) | | on a linear set X is a real valued nonnegative function
with the following properties:
(D x|=0 if and only if x=0,
@ |x+y|<ix]+ly] for all x,y in X,
(® if {a,} is a sequence of real numbers converging to a real number a and (x.} is a
sequence of points of X with |x,~x|—0, then |a,x,—ax|—0.

A B-norm for a linear set X satisfies (1) and (2) of the above definition. But, condition
(3) is replaced by
(4) lax|=]a||x], where a is any real number and x is any element of X.

Let | |, and | |; be two (B- or F- Dnorms defined on X. We define
| 2] s
if [x./,—0 implies |x,|:—0.
When | [,2] |; and | [:=] |, we say that | |, is equivalent to | |, and write | |,~] ..

A two-norm space is a linear set X with two norms, a B-norm | |, and an F-norm | {..
A sequence {x,} of points in a two-norm space (X, | 1|1, | |2) is said to be y-convergent to x
in X, written x,—>x, if

lim sup,|x,|, < and lim,|X,—x|.=0.

A sequence {x,} in a two-norm space is said to be y-Cauchy if

(%32 ~Xen)—0 a8 Py, Q—>0.

A two-norm space X,=(X,| |, | |2 is called y-complete if for every r-Cauchy sequence

{x.} in X, there exists an x in X, such that xn—er.



‘A r-linear functional f on a two-norm space is a real valued function on X, such that
1) f(ax+by)=af(x)+bf(y), for all real numbers a,b and any x, y in X,,

@ if x,~>x, then f(x,)—f(x).

The set of all y-linear functionals on X, will be denoted by X,*. It is easy to see that
X,* is a linear set.

Let X be a linear set and suppose that | |, is a B-norm, and | |*is an F-norm on X. Let
X,={xeX: [x|:=1} and define

dx,y)=|x—y|* for x,y in X,.

Then d is a metric on X, and the metric space (X,,d) will be called a Saks set. If (X,,d)
is complete it will be called a Saks space. We shall denote (X,,d) by X, | |, ] |®.

A linear functional L, on (X,*,| |*) is defined by L,(f)=f(x) for each f in X,*.

In many cases, it makes no difference whether we work in the setting of Saks sets or
that of two-norm spaces. An advantage of working in the setting of a Saks set is that
we may use category arguments. A disadvantage is that a Saks set is not a linear set
while a two-norm space is a linear set.

We now state a theorem which tells us when weak convergence is equivalent to
convergence in the strong topology.

Theorem. Let (X, | |x) be a Banach space and let (Y,| |v)=X, | |)* Suppose that there
exists a Frechet worm | |¢ such that the Saks set Y,=(Y,| |v,| |&) is compact and satisfies
() (see [41). If Y.* contains {Ly : x€X}, then weak convergence is equivalent lo convergence
in the strong topology in (X, | [x)-

Proof. Let {x,} be a sequence in X converging to zero. Then for any given positive real
number ¢ there exists an integer N(e) such that

|L,,(¥)|<e for all n<N,
for each yeY,={yeY:lylv=1}.
Since x,——0 weakly in X, y(x,)—0 for each yeY. Thus
L. .3 =y(,)—0 for each y=Y.
Since each L,,€Y,* and Y, is complete and satisfies (L), {L.,} is equicontinuous at zero in
Y,.. Hence given any positive real number ¢ there exists a positive real number d(e) such
that if veY, and |vls<d(e), then [L, (v)<e/4 for each n.

Since | |r is an F-norm, given d>( there exists p such that 0<p<d and |y|s<p implies
|v/2|:<d. Moreover, since the metric space Y, is compact, we can choose a p/2 net,
{yilkoi, for Y, such that if weY,, there exists k, 1<k<t, with |w—vy,[s<p/2. Furthermore,
there exists an integer N(¢) such that for n>N, |[L, (y)<e/8, 1<kst.

Let x be an arbitrary element in Y,. Then there exists a k, 1<k=t, such that |x—vilr
<p/2. Hence [(x—y,)/2|s<d. Since (x—-y,)/2€Y,, for every n>N, we have

L (x/2)| S |L, ((x=¥)/2) | + L., (7 | <e/2.
Hence, altogether we have
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{L,,(x)| <e for each n>N.
Since each x was an arbitrary element of Y,, this implies that
|L,,|x**<e for each n>N.
Thus, |%,lx<e for each n>N, and this completes the proof of the theorem.

Before we go on further we cite some definitions due to Banach ([6], p.243).
Let {X,} be a sequence of Banach spaces. We define

V(IXD={{0) s X, for each k, Elxlx <}
If the vector addition is defined in the usual way, it is a linear set. Moreover, if we let
IXIV‘XkV:iZ:;I,XiIXi and x={x},

then (V({Xu), ! v is a Banach space, and the dual of it is the space (m({X:*}),
| lm(xm)), where

m({Xi*})={{xk} & X,* for each k, supklxklxk<°°}:

Xn(xe)) =SUP ) Xl y 0, X= {Xid .
We define (m,({X,*}),d) to be the Saks set (m{({X.*}), | lmcixgns || lIs), where
” {xk} ” s=.§12_ilxilxiu/(l+ lxilxia)'

Then it is easy to see that (m,({X,*}),d) satisfies ().

Theorem. The space (m,({X*}),d) is a complete melric space, thus it is a Saks space.

Proof. Let {x.}, x,={x..}, be a Cauchy sequence of points from m,({X,*}). Then for
each i, [X.1— xm-ilx-,*_"o as n, m—->o0,

Since X* is complete, we can find y,eX* with IYilx;‘<1 such that |X,,~v:l,.—0 as
n——co, Hence y={y;} em,.({X;*}). Since coordinatewise convergence is equivalent to || ||,

convergence, we have [ x,—y|,.——0 as n tends to infinity. Thus the given space is
complete.

Theorem. If each X.* is finite dimensional, then (m,({X;*}),d) is compact.

Proof. Let {X,}, x.,={x..}, be a sequence of points from m,({X,*}). Then an,klxkél
for each n, k. X.* being a finite dimensional space, we can choose a subsequence {x,} of
points from m,({X*}) and a sequence y={y;} such that IXnk.;—yilxi.-’() as k——oo for
each i (Use Cantor diagonalization method.). Since coordinatewise convergence implies || |,
convergence, we have | x, —vy [ .——0 as k—>c0,

Since (m,({X,*}),d) is complete by the above theorem, y={y.} belongs to m,({X.*}).
Thus (m,({X,*}),d) is compact and the proof is completed.
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