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On the local structure of a Distribution
By Koo Kwang Jo

Dan Kook University, Seoul, Korea.

1. Introduction

In the past, the properties of the figure, as a subject of FEuclidean geometry, were
considered in various ways, that its presentation in terms of the coordinates, was very
limited. In Euclidean geometry based on the theory of manifold, in the broad sense, we
study the length or area, and we also classify the properties of the figure which are
invariant under the congruence transformations and the similarity transformations in R"
In other words, according to the development of mathematics, the subjects of Euclidean
geometry are gradually abstracted and classified as broad one.

In this sense, among many theories to study Euclidean geometry, there is the theory of
distribution developed by Laurant Schwartz.

Let x=(X;, Xz X,) and y=(y1, ¥a ' ¥.) be points of # dimensional Euclidean space
R’, and let asR.

Then x+y=0C+Y, Xe+Va o X FY)

ax="{(ax;, aX; -, aX,)

Let ¢(x) be the infinite differentiable function on R". Then the closure K of
K=1{x; ¢(x)#0} in R" is called the support of ¢(x). When the support of ¢(x) is compact,
the universal of ¢(x) is denoted by (Ds-).

In that case, the mapping T which associates a complex number T(g) to each ¢(x) of
(Dw) is called a distribution defined on (Dz-) if the following two conditions ar satisfied

T(ayp:+azp:) =a: T(p) +a, T(p:) (additivity)
i}ino Tl =0 (continuity)

Thus a distribution T is a continuous additive functional defined on (D=-)

The subject of this paper is to study and extend the theory of distribution of Schwartz.
This work is so broad that this paper focused on the local structure of the distribution.

This field has been presented only by Kim H.B. in Dan Kook university at the meting
of the Korean Mathematical Society in 1969. Thus this study field needs much more
research.,

This paper is divided into the following three parts

1. Local structure of the distribution



2. The support of a distribution

3. Distribution whose support is compact

At the end of this paper we will give a necessary and sufficient condition for a distribut-
ion T to be have x=0 as its support.

2. Local structure of the distribution

Lemma 1. Let X be a compact set of R” and p(x)e (D), where sup () is a subset
of K. Let disy (¢, ¥) be the distance between two functions ¢ and ¥ in (D,). For each
pe(Dy), let p,(‘"”(tp);ssup KID‘”;D(X)I, i.e., px'™ is the maximum value in K of absolute

value of all the partial differentials lower then s order. Therefore, if m<p then
x(0) S 0 (0).
Thus the next conditions are satisfiea
1) diSK (50, w’)=dlS1f (¢——W7 0)=dlSK (¢'—W, 0)=d151( (¢, w')
i) disy (p, ¥)=0, and disy (@, ¥)=0 if and only if ¢=¥
i) disy (@, ¥)<disg(p, x)+dise (x,¥)
iv) @0 ((Dy)) if and only if }ex_.n:l” disg(p, 0)=0

Lemma 2. The metric space (Dy) is complete. This is. if a sequence {g,} of functions
in (Dy) satisfies Cauchy conditionhlim disy (ps 9s,)=0 then there exists only one ¢ (Dy)

such that
}llLrg disy (pn 9)=0
Lemma 3. Let T pe a functional defined on (D#) such that
T(awpitap) =aT(p) +a.T(p,) (additivity)
Then T is a distribution if and only if
lim disy (i 0)=0 implies lim T (pr)=0
for any compact set KcR".
Definition. The order of T at K is said to be at most m, if
}}irg px™(pp)=0 implies lim T(p,)=0
Now, the minimum value of m is called the order of T at K. Let T be an additive
functional defined on (D). If there exists an integer m=( such that
}i‘l? ox ™ (ps)=0 implies }Lm Tl =0
for any compact set XcR", then T is a continuous distribution on (Ds-).
In this case, the order of T in R" is at most », and minimum value of m is called the
order in R".
Lemma 4. The order of a distribution T on any compact set KCR" is finite.
Proof The distribution T is continuous on the metric space (D,) by lemma 3.
Since T(0)=0, there exists a positive number §=5(T, K) such that
pe(Dy) and disy (¢, 0)<d implies [T(@)|ST wererescemrerinceees ™
Here, 6(T, K) means that ¢ depends on T and K. By the way, for every m,=0



i D S Paud C) MW <R SR P )
disx(p: 0) mz=0( 2" 1+pc™ () )m+=m.+1( 2" 1+ (p) )

Using this fact we obtain, if m<p, then o™ (@) £ 0 (0D,
™ () o Foem
dISA(Qy 0)— 1+p ('"“)(Q) 22 +22

m=0 m=pmy+1
It follows from (1) that there exist an integer m,=m,(T, K)z0 and a positive number
p=79(T, K, m,) such that
peDYand sup  IDPp(O|Sy implies [T(PI[S1 wwrvoversmvessses )
Next, we introduce a symbol

e ¢ ... tevesssseseansstsennnnssennnesernnrenseens )
ox’ 0%, '0%,"+++0X,’

Then we can show that there exists a positive number r=¢ (n, m,) such that
™o (x) | G ()| Sy ceoeer
pe(Dy) and o ) &4 1mp11es sup _ ID e[Sy @
Let ¢t be the largest one among 1 and the diameter of a compact set K.

Xm o1 16| Smax
By Schwartz inequality
amrl;o(x) ldx<<5 dx S‘

M
hence, if ¢ satisfies (4¢) then
mTe(x) 'dxgt‘;.,ﬁ ..... revestesissssseneosesrnasenies SO )

-gx oxmetl
On the other hand, if the support of ¥(x) is compact then

¢(x1,,x,,)=5i OF (Xup =+ Xizpp by Xya1s o201 Xp) & for i=12, i n

= ol

at
Therfore
[ (X, o+, XD | ggi'wl CLAC ST xi-gt" Xis1r % Xa) ]dt ........................... ®)
a"’“¢(x) . amor!(p(x) .
[ 20| ] | T
Thus, by (5), if ¢ satisfies the condition (4) then
i"_"?_({)_lgﬁ".,g‘ ................................................... o
axm

Hence, Using (6) again for t=1, we have

n 1
sup |D®p(x) | SETopTofrme cornesrsanss tserenesssssretsatnsatrnsrsons €))
1 EmezeK
Now if we take # ;:g;ft—z””"‘" ...................................................... (9)
then sup_ [DPp(x)| =7

161 Sme, x€K
Finally, we can find the following:
If a distribution T and a compact set K are given, then there exist an..integer
me=mo(T, K)=0 and a positive number r=« (T, K.» ) such that

my+ 2
ps (D, .S.x i%g_’f)_ dx<r implies [T(E)[S1 wweeeeeeees aeenreneaes ao



For each p(x)&(Dy), define ¥'=L(p) by
) =000 ¢ py

6x'"°+‘
Then L is additive, so L(aipi+a.p.)=a:L(p))+a;L(p,), and it is one-to-one by (6)
Let S=TL'@))=T(p) -rererersererrrscrecrsssiriirsnresnnens 1D

Then S is an additive functional on the vector space

mo-t-1
M={F : 7=Lr=L"200 oo (p,))

By (10) N 1 e=({ 170 12dx)?<a? implies |S@)| ST weeeeer reeessnserenaosaaeens 12
. (12)

The vector space M is a pre-Hilbert space equipped with the norm || ¥ ||.
Therefore, from the theorem of Riesz it follow that there exists a complex-value

measurable function f(x)=f(x; T, K) defined on K with [ S|l ,(éx% such that

S@ =Skf(x)w(x) QX wostecressresensreseesesstesiessessnassannaans 13)

From the above facts, the next lemma holds, and the order of X is at most #n(m,+1)
in K.

Lemma 5. For every distribution T and compact set KcR", for some integer
me=mo(T, K)=0 and x=«(T, K, m,)>0, there exists f(x)=f(x; T, m,) such that

11 e=( 1701 ax)?<et and T ={ /0-L2E 4y, for every pe (D))

axmrH

Lemma 6. Let {U;; A=A} be an open covering of R", that is every U, is open in R" and
U U, =R". Then there exists a countable family {V.,} of open sets which satisfies the
LEA
following conditions

i) Every V; is contained in any U,.

) Q: V=R

iid) {V,} is locally finite, that is for every compact set KcR", V., is finite which V,nK.

iv) The closure of each V, is compact.

Lemma 7. Let {U; A€4} be an open covering of R". Then there exists a countable

family {p; (x)} c(Dr) which satisfies the following conditions.
i) The support of each ¢;(x) is contained in any U,

i) 0<¢,(x)S1 (i=1,2 ), and iél;o,-(x)=1.

iif) {supp (p,)} is locally finite. (supp (p,) is support of ¢,)

8. The support of a distribution

We say that a distribution T is (0 at the neighborhood of point x°, if there exists
neighborhood U(x") of x° such that
supp (p)cUE?) implies T{p)=0
Lemma 8. If a distribution T is 0 at the neighborhood of each point in an open set

— 38 —



UcR®, then T is 0 at U, that is T(p)=0 for all (D ) with supp {p)cU.
(Proof) For each x*€U, we will take neighborhood U(x®) of x° contained in U such that
supp (p)c(x*) implies T(p)
Then {U"; x°€U} is an open covering of U. Hence, by lemma 7, there exists a
countable family {p;(x)} < (D) which satisfies the following conditions
i) The support of each ¢,(x) is contained in U(xD"*

i) 0Sp,(0S1 (=12, and Lp(0=1.

ii) {supp (p.)} is locally finite in U.

Now, if supp(p)cU then, by ii), T(¢)=T((z‘l¢i(x)-¢(x)) and, by iii), iOZj;lgo,.(x)ogo(x)
is a finite sum on every compact subset of U.

Therefore, T(go):ilT(gai-ga) by the additivity of T. Since, supp(yp; ¢)csupp (¢;) is
contained in any U(x?) by 1), from the definition of U(x®) it follows that T(y; ¢)=0
Therefore, if supp(p) <U then T(p)=0.

4. Distribution whose support is compact

Definition of (Ds) : The universal set of infinite partially differentiable functions ¢(x)
defined on R” is a vector space with respect to operations
(p+P) (X =pX)+¥(x), (ap)x=ap(x)
A series {p,(X)} of functions in (D) is said to be convergent to 0 if for any ¢,(x), its

2
all palial derivative functions 99, () , 9, (x) ,
7). 0X;0%;

every compact set K. We will denote it by
>0 (D&) or }‘1_1.2 o»=0 (Dr)
Lemma 9. (Dr) equipped with

: — g 1 diSE,h(sov ?p‘)
dlSE((p’ w) _/¢Z=1 24 1+diSE.k(?y v,

1 _a™ =)
2 T G-D

- is uniformly convergent to (0 on

where disg,.(p, T = i:}o

is a complete metric space.
And ¢,=>0 (D#) if and only if Ihirn disg (¢n 0

Definition of (Dg)’, (Er)’: A distribution T is an additive continuous functional. The
universal set of a distribution in the dual space of (D&, which is denoted by (Ds)’.

Let T be an additive continuous functional such that

lim ¢,=0 (Er) implies lim T(gn)=0

Let (Er) be the dual space of (Er). Then we obtain the following lemma.

Lemma 10. The univessal set of a distribution whose support is equal to (Er)’. By (10),

for open set U,>(clesure of U)=supp (T) which contains compact closure K, if we
take (Dx) then, ape(Dx) for every p& (Er?)

Hence, by lemma 5, for some integer p=p(T, K)=0 and r=«(T, &y, p) >0, there exists



SO =f(x; T, ki, P) such that

supp (DK, ISl x={ [(fO1"dx*ss* and Flp)=T(ap) ={ f0O D ap)0dx
Then, by the Leibnitz fomular the following equality holds for D®a(x) -
F(¢)=T(aqp)==2_pC£ JSED P a(x) DPp(x)dx
4=
=5 (—DD®T,.pe-valp)
qsp
Since supp(f-D¥ Pa)csupp(f)c K, we obtain the following lemma.
Lemma 11. If the support of a distribution T is compact, then T is sepresented by
T= §p D(Q)T/:g(x)-
q

Here, we may assume that the support of each function f,(x) contains every nighborhood
of the support of T. Clearly, the order of T in'R" is finite (£|p}). Using the formula of
lemma 11, we oftain the next main theorem.

Theorem. Distribution T has x=0 as its support if and only if T is represented by

T= 5 C,DWT, -rerrecsrrmsrrsressseserssnsnes errerees 6))

lei= 10!

where the C, are constant.

Proof By lemma 11, the order of T is finite. Hence, for a given function series {¢,(x)}
of (Dr), if {D%,(x)}, lgl<|L{, is uniformly convergent to 0 in R" then lhx_x'n T (ps) =0.

For every ¥(x) e (D®), let

- xlﬁ n-x"ﬁ- @
x) mszm gileg,! (DR D a0t ()
which is the Taylor extension of ¥(x).

Then
(D‘p)go(x)),:o:O U@l S1P)  ererverssremscnniiniiiirensniiinnnn. (@)

At first, we will derive a formula for T(¢) from (2).
(1) From (2), it follows that Sup [D®e(x)|=75(#) is convergent to 0 (h—)
Iy 11, 1xl 5 —
aﬁ1—1+!’z+...+P.sD(X)
axlﬂl—lale’z...ax”m ‘
which is made of (D®p(x))...=0, we obtain

aﬂa—1+ﬁ.+---+p.¢(x) .1_
supl l X 19X P 0%, P t_S_ h 7](11).

Hence, since =S;D" 2o(f) Xz ooy Xp)dE

IIIS—T
Again by (2), if im|<|p] then
- 1 1p)—1m|
sup  |D™p(x)) §77(h)(7[) ........ R L T T I e 3
[E1H ,ll
1 Ixls4
(i) If a(x)=(Dr) is defined by a(x)={ ............................................. W
0, Ixiz=1
then -



D®a,(X)=hr"(D®a(h))yns for a,(x)=alhx)
Hence, for some positive integer e,
sup | DWa,(x)|= 5“1,3. | DPa, (X)) | Shitle, seeesseersrvecanens seeenns(5)

xS ;

Now, set ¢,(x)=a,(x) ¢(x), then by the Leibnitz formula,
D"’ga(x) —_ ZC;D('—“GI, (X) 'Dmgﬁ(X)
gLr

Therefore, since supp(p,) csupp(a,)c {x pIxl -1—},

from (3) and (5) it follow that
sup DV, (x)|= sup |DP¢,(x)[S T Cie,..s"=0 ||~ P+1ain(h)
e gqsr

ixlg

Since r=2gq, |r—ql=\7|—lql, andhr;(h)—»o as h—oo, we obtain
sup| DVp,(x)| -0 (h—oo), |r|<|pl
Thus ;,llg,l T (¢(x))=0, that is, H& Tla(rx)e(x))=0
Finally, since T{(p)=0 it follows from (2) that
T@= g T(ZE ) (pop ).,

_IGISU’! 41!"'q;,!
Therefore T= X2 CDT,

lgl=1pl
Corollary. Define Ts, by T,.(¢)=¢(h). Then a distribution T has only one point x=#4 as
its support if and only if T is represented by
T= X CDTy
lglsp
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