Abstract
For testing $\beta_i=\beta, i=1,...,k$, in the regression model $Y_{ij} = \alpha_i + \beta_ix_{ij} + e_{ij}, j=1,...,n_i$, a simple and robust test based on Kendall's tau is proposed. Its asymptotic distribution is proved to be chi-square under the null hypthesis and noncentral chi-square under an appropriate sequence of alternatives. For the optimal designs, the asymptotic relative efficiency of the proposed procedure with respect to the least squares procedure is the same as that of the Wilcoxon test with respect to the t-test.