Magazine of the Korean Society of Agricultural Engineers (한국농공학회지)
- Volume 20 Issue 3
- /
- Pages.4739-4749
- /
- 1978
- /
- 0253-3146(pISSN)
Hydrological Studies on the Comparison and the Derivation of Unit Hydrography in the small River Systems.
소하천수계의 단위유량도 유도 및 비교에 관한 수문학적 고찰
Abstract
This studies were conducted to derive synthetic unitgraphs and triangular unitgraphs correlated with watershed characteristics which can be used to the estimation and control of flood for the rational development of Agricultural water resources. Derived Synthetic unitgraphs and Triangular unitgraphs can be applied to the ungaged watersheds were compared with average unitgraphs by observed data. Seven small watersheds were selected as studying basins Han, Geum, Nakdong, Yeongsan and Inchon river system. The results summarized for these studies are as follows: 1. Average unitgraphs by observed data and dimensionless unitgraphs for synthesis were derived for all river systems. 2. Peak discharge per unit area of the unitgraph, qp, was derived as qp=10-0.389-0.0424Lg with a high significance. 3. Formulas for the base width of unitgraph of 50 and 75 percent for peak flow for each water systems was adopted as Table 5. 4. The base length of the unitgraph, Tb, in hours in connection with time to peak, Tp, in hours was expressed as Tb =4.3Tp. 5. Peak discharge, Qp, were obtained as Table 6 by the Triangular form to all subwatersheds. 6. Relative errors in the peak discharge of the synthetic unitgraphs showed to be 7.3 percent to the peak of observed average unitgraphs except errors of peak discharge for Yeongsan river system. This indicates that Synthetic unitgraphs for the small watersheds of Han, Geum, Nakdong and Inchon river systems can be applied to the ungaged watersheds. On the other hand, It was confirmed that the accuracy of Instantaneous Unit Hydrograph with only 1.6 percent as relative errors was approaching more closely to the observed average unitgraph than that of synthetic unitgraph with relative errors. 23.9 percent for Yeongsan river system. 7. Errors in the peak discharge of the triangular unitgraph to the observed average unitgraph showed to be 0.6 percent to 7.5 percent which can be regarded as a high precision within the range of 200 to 500
Keywords