ZEROS AND ORTHOGONALITY OF THE POLYNOMIAL SET $B_{n}(x, y)$

By I. K. Khanna

1. Introduction

The present paper comprises of a discussion on the nature of the zeros of the polynomial set $B_{n}(x, y)$ followed by a note on its orthogonality. $B_{n}(x, y)$, the generalization of as many as eighteen classical polynomials like Hermite polynomial, Laguerre polynomial, Legendre polynomial etc. have been defined by means of the generating relation

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(x, y) t^{n}={ }_{p} F_{q}\left[\left(\alpha_{p}\right) ;\left(\beta_{q}\right) ; \nu x t\right]{ }_{r} F_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; \mu y^{-m} t^{m}\right] \tag{1.1}
\end{equation*}
$$

valid under suitable conditions given in [1] and [2].

2. Zeros of $\boldsymbol{B}_{\boldsymbol{n}}(\boldsymbol{x}, \boldsymbol{y})$

By the use of 'Descartes' Rule of signs of the theory of equation [4], the following conclusions regarding the zeros of the polynomial set $B_{n}(x, y)$ can be summarized as:
A. If $\nu, \mu, y,\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{s}\right)$ be all positive, then
(i) $B_{n}(x, y)$ has no positive zero.
(ii) It has no negative zero if m be even
(iii) If m be $o \cdot d$, the number of negative zeros is not more than $\left[\frac{n}{m}\right]$.
(iv) If n be not an integral multiple of m, then $x=0$ is at least one of the zeros, while otherwise, results, (i) to (iii) again hold good.
B. If $\nu, y,\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{s}\right)$ be all positive, but μ be negative then
(i) Numbers of positive zeros of $B_{n}(x, y)$ are not more than $\left[\frac{n}{m}\right]$.
(ii) It has no negative zero, if m be odd.
(iii) If m be even, maximum number of its negative zeros is $\left[\frac{n}{m}\right]$
(iv) Same as (iv) of (A).

C, If $\mu, y,\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{r}\right)$ be all positive, but ν be negative, then according as m is even or odd, all the four conclusions of (A) and (B) respectively hold good.
D. If $\mu, \nu,\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{s}\right)$ be all positive, but y be negative then according as m is even or odd, all the four conclusions of (A) and (B) respectively hold good.
E. If $y,\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{s}\right)$ be all positive, but μ and ν be both negative, then according as m is odd or even, (A) and (B) respectively hold good.
F. If $\nu,\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{s}\right)$ be all positive, but μ and y be both negative, then according as m is odd or even, (A) and (B) respectively hold good.
G. If $\mu,\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{s}\right)$ be all positive, but ν and y be both negative, then all the conclusions of (A) hold good.
H. If $\left(\alpha_{p}\right),\left(\beta_{q}\right),\left(a_{r}\right)$ and $\left(b_{s}\right)$ be all positive, but ν, μ and y be all negative, then all the conclusions of (B) hold good.
I. Furthermore, by virtue of several examples similar to the two given below, it is evident that the zeros of $B_{n}(x, y)$ are not all distinct:
EXAMPLE 1. $\quad B_{2 ; \nu ;\left(\alpha_{p}\right) ;\left(a_{r}\right)}^{1 ; \mu!\left(\alpha_{p}\right) ;\left(a_{r}\right)}(x, y)=\frac{1}{2 y^{2}}(\nu x y+\mu)^{2}$.
EXAMPLE 2. $B_{2 ; \nu ;}^{1 ; \mu ;-1 / 2,-1 / 2 ;\left(a_{r}\right)}(x, y)=\frac{1}{8 y^{2}}(\nu x y+4 \mu)^{2}$.
J. The zeros of $B_{n}(x, y)$ are not interlaced.

3. Orthogonality

The polynomial set $B_{n}(x, y)$ is not orthogonal, which is evident because of the following observations:
I. we know that, if a simple set of real polynomials $\phi_{n}(x)$ is orthogonal, then the zeros of $\phi_{n}(x)$ are all distinct [5; p. 149. theorem, 55]. But in our case, res ults of article 2 show that the zeros of $B_{n}(x, y)$ is not orthognal.
II. Recently, J. Shohat [6] has shown that a necessary and sufficient condition, that the sequence of polynomials

$$
\begin{aligned}
& \phi_{0}(x)=1 \\
& \phi_{1}(x)=x-c_{1} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& \phi_{n}(x)=x^{n}-S_{n} x^{n-1}+d_{n, n-2} x^{n-2}+\cdots \cdots \cdot(n=2,3, \cdots \cdots \cdot)
\end{aligned}
$$

form a sequence of orthogonal polynomial, is that they satisfy a differential equation of the form

$$
\phi_{n}(x)=\left(x-c_{n}\right) \phi_{n-1}(x)-\lambda_{n} \phi_{n-2}(x), \quad\left(n \geq 2 ; c_{n}, \lambda_{n} \text { are constants }\right)
$$

with positive λ_{n}.
Now, our polynomial set $B_{n}(x, y)$ does not satisfy this type of difference e e^{-} uation. Hence it is not orthogonal.
III. Abdul Halim and W.A.Al-Salam [3] have given two elegent proofs of the result, that the only orthogonal polynomials of the form

$$
{ }_{p+1} F_{q}\left[\begin{array}{c}
-n, \tag{3.1}\\
\left(b_{q}\right)
\end{array} ; x\right],
$$

where n is a non-negative integer and the a_{i} 's and b_{j} 's are independent of x and n. are ${ }_{1} F_{1}[-n ; b ; x]$.

Hence, clearly, our polynomial, which is a generalization of (3.2) cannot be orthogonal.
IV. Since our polynomial set does not satisfy the three-term recurrence relation, we observe $[5 ; \mathrm{p} .151(1)]$ that $B_{n}(x, y)$ is not orthogonal.

Banaras Hindu University
Varanasi 221005
India

REFERENCES

[1] Agrawal, B. D. \& Khanna, I. K. A general differential equations for classical, polynomials, Proc. Amer. Math. Soc. vol. 22, 1969, 646-649.
[2] Agrawal, B.D. \& Khanna, I. K., Unification of certain classical polynomial, Prog. of Math. vol. 8, no. 2, 1974, p. 15-24.
[3] Abdual-Halim, N and Al-Salim, A characterization of the Laguerre polynomials, Rend. Sem. Univ. Padova, 34 (1964), 176-179.
[4] Hall and Knight, Higher Algebra.
[5] Rainville, E. D., Special functions, Macmillan, New York, 1960.
[6] Shohat, J., The relation of the classical orthogonal polynomials to the polynomials of Appell, Amer. Jour. of Math., vol. 58 (1936), 453-464.

