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A GENERALIZATION OF KARLSSONS’ FORMULA

By B.L. Sharma

1. Introduction

In a recent paper [3], Karlsson has proved the formula
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According to Erdelyi [1] the fractional derivative is defined by
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which holds for all values of 4 except A=u. By means of (5), we can easily
establish the formula
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In the investigation we also require the following theorem due to author and
Manocha [2].

THEOREM. If U and V are analytic functions of x, then
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where A is a complex number.

2. The formula to be proved is
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By the principle of Analytic continuation, Eq. (8) is valid whenever the func-
tions involved are all analytic.

PROOF. To prove (8), we take V=x""7 ! and V= qu(ar ; qu x), substituting
these values in (7) and using (5) and (6), we have
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we repeat this process to m times, we get (8). This completes the proof.
In particular, if we take o =m,, -+, 0,=m,, where m,;, ---, m_ are positive in-

tegers, in (8), it reduces to (1).
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