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A THEOREM ON C-LOOPS
By Afzal Beg

1. Introduetion

F.Fenyves [2], [3] defined extra loops and C-loops. He showed the equivalence
of extra loops and Moufang loops.

The purpose of the present note is to obtain the equivalence between extra
loops and C-loops.

2. Preliminary information

Let (G,.) be a loop whose identity element is denoted by 1. For each x € G
the mappings R(x) and L(x) are defined by y R(x)=yx and y L(x)=xy for all y £ G.
It follows that R(x) and L(x) are one-to-one mappings of G onto G. I (G,.)
1s an inverse property loop, then corresponding to each ¥ &€ G there is an xf =5
& (G so that xx—1=x"'1x=1, R(x)_l=R(x_1) and L(x)_1=L(x_1). Further, ]2
=1, JL(x)J =R(x)_l, JR(x)] =L(x)"". J is known as inverse mapping. The left
nucleus N,, the middle nucleus ¥ ,» and the right nucleus N o of a loop (G,.)
are defined by

N,={all x € G|x-yz=xy-2, all y, zeG},

N#= {all ye Glxyz=xy-2, all x, z&€ G}
sz {all zE€ G|xyz=xy-2, all x, yE G}
The nucleus N of (G,.) is N=N2ﬂNﬂﬁN‘0.

Recall that an ordered triple (U,V,W) of one-to-one mappings U,V and W of
G onto G is called an autotopism of the loop (G,.) if and only if xU- yV=(_xy)
W for all x,y € G. It is well known that the set of all autotopisms of a loop
forms a group under the usual “componentwise multiplication”.

For a detailed account of the loop theory concepts mentioned in the preceding
paragraphs see Bruck [1]. We summarize those basic results needed about Mo-

ufang loops and 1n particular, about extra loops and inverse property loops as
follows:

THEOREM 1. Let (G,.) be a Moufang loop. Then
(1) (G,.) ts an tnverse property loop (see Bruck [1], Ch. W, Lemma 3.1),
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(11) the right, middle and left nucle: of (G,.) coincide with the nucleus of (G,.)
(see Bruck [1], Ch, VI, Theorem 2, 1).

DEFINITION 1. A loop (G,.) is an extra loop if and only if
(1) (xy-2)x=%(p. 2%)
for all x, v, 2&€ G. (See Fenyves [2])

THEOREM 2. Let (G,.) be an extra loop. Then(G,.) is Moufang. (See Fenyves
[2], Theorem 3).

THEOREM 3. A loop (G,.) is an extra Zoaﬁ 1f and only if
A, (x)=(L(x), R(®™, LEOR®E ™
:s an autotopism of (G,.) for all x &G (See Fenyves [2], Theorem 2).

THEOREM 4. If (U,V,W) is an autotopism of an inverse property loop (G,.).
Thern (JUI,W,V) and (W,JV],U) are also the autotopisms of (G,.), (see Bruck

(1], Ch WI Lemma 2.1), where ] . x—x " is the inverse mapping of G.

DEFINITION 2. A loop (G,.) is @ C-logp if and only if
(2) , (yx-x)z2=p(x-x2)
for all x,3, 2z €G. (See Fenyves [3]).

- THEOREM 5. Let (G,.) be a C-loop. Then (G,.) has inverse property. (See
Fenyves [3], Proof of Theorem 4).

3. Main Theorem

First we prove the following lemma:

LEMMA. A loop (G,.) is a C-loop tf and only if (R(x)R(x), L(:c)-l]_',(x) *1, )
s an autotopism of G, where I is the identity mapping of G.

PROOF. (G,.) is a C-loop if and only if (2) holds i.e. (9x-x)z=y(x-x2) for
all x, y, 2& G. Replacing z by x_l(x_lz) and appealing to the fact that a C-

loop is an inverse property loop (See Theorem 5), we have, equivalently, that
(G,.) is C-loop if and only if

(yx-x) (x_l(x_lz))=yz

& YRR 2L(x) ' L(x) “l=(2)I
for all v,z € G.

& (RER@E, L™ Lx)™Y I

is an autotopism of G and the proof is complete.
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We are now in a position to present the main

THEOREM. The following statements are equivalent for a loop (G.,):
(a) (G,.) ts an extra loop,

(b) (G,.) is C-loop and (R(x)“°L(x), L(xY’R(x)™", L(x)R(x)™) is an autoto-
pesm of (G,.) for all x EG.

PROOF. (@) —> (b). Suppose (G,.) is an extra loop. Then from Theorem 3
we have the the autotopism
A (®)=(L(x), R(® ™, LRE)™.
Also from Theorem 2, (G,.) is Moufang i.e. satisfies the following Moufang
identity:

(3) (xy) (zx)=x((y2)-x]
Now (3) gives the autotopism A,(x)=(L(x), R(x), R(x)L(x)) of (G,.). Therefore,
we have the autotopism

Ay (D AL(x)=(L(x), R(x) ™", L®R) L), R(x), R(x)L(x))
=(L(x)L(x), I, L(x) L(x)).
Then by Theorem 4, A,(x)=(L(x)L(x)], L(x)L(x), [D=(R(x)-1R(x)-1, L(x)L(x),
I) is an autotopism of (G,.). This implies that (R(x)_lR(x)—l, L(x)L(x),
I)_lz(R(x) R(x), L(x)_ll,(x)_l, I) is an autotopism of (G,. ).

Hence, by lemma (G,.) is a C-loop. Also, Az(x)A4,(x) =(R(x) ™% L2 D(L(x),

R, LOR®  H=(R) 2L, Lx)R(x)™Y LxR(x)™Y) is an autoto-
pism of (G,.). Hence, (a) =— (b).

(b) —> (a). Assume (b). Then (R(x)_zL(x), L(x)zR(x)—l. L(x)R(x)_l) and
by lemma, (R(x)z. L(x)_z, I) are both the autotopisms of (G,.). Combining both

the autotopisms we have that (L(x), R(x:)ul. L(x)R(x)_l) is an autotopism of
(G,.). Therefore, byTheorem 3, (G,.) is extra loop and the proof is complete.

REMARK. As alternative law holds in a C-loop, we have

R(x)°=R(x>), R(x)"°=RGD™", Lx)*=L(x>.

Therefore, if the mapping x — % is a permutation of a loop (G,.), then the

above theorem can be stated as follows:
The following statements are equivalent for a loop (G,.):
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(a’) (G,.) is an extra loop,

(b)) (G,.) is C-loop and (R(x)_lL(xj, L‘{x)R(x)_l, L(x)}?(x)_l) IS an autoto-
pism of (G,.) Vx EG.

COROLLARY. If the mapping x —> 7 ’s a permutation of an extra loop (G,. ),
then (G,.) is a group.

PrROOF. If (G,.) is an extra loop, then by main Theorem, (G,.) is C-loop.
Therefore, (2) holds and by alternative laws, we have

(92)2=3(x°2) ¥y, z EG.
This implies that x° is in the middle nucleus (N‘u) of (G,.). Using Therem 1

and Theorem 5, we have z~ in the nucleus of (G,.). As x — 1% is permutat-

ion, we can say that x is in the nucleus i.e.x associates with every element of

(G,.) Yx& G, Hence, (G,.) is associative. This implies (G,.) is a group.
This completes the Corollary.
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