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SOME APPROACHES TO CLUSTER SETS IN GENERAL TOPOLOGY
By T.R. Hamlett

The study of cluster sets was first introduced by Painlevé in his lectures in
Stockholm in 1895 [2, page 1], and has been extensively developed since that
time for complex valued functions of a complex variable. Several definitions
have recently appeared in the literature of sets which are extensions of the notion
of cluster set to arbitrary topological spaces. The purpose of this paper is to
unify the theory of cluster sets in general topology and to prove some theorems
giving sufficient conditions for a function with a closed graph to be continuous.

Hereafter, we will use CI(4) to denote the closure of 4, A’ to denote the set
of limit points of A, N(X) to denote the neighborhood system at a point =z,
and X and Y will be used to denote arbitrary topological spaces with additional
hypotheses stated as needed.

1. Cluster sets

Consider the following definitions.

DEFINITION 1 [8]. Let f:X-Y, X, with X and Y Hauédorff. The set
of limit points of f at x, denoted L(f; x), is the set of all points y in ¥ such
that there exists a sequence x —x with f(x )—y.

DEFINITION 2 [6]. Let f: X—R where R denotes the real line. The H-cluster
set of f at x&€ X, denoted HC(f ; x), is the set of all real numbers ¥ in R such

that for each 7>0, z& [f ((y—r, y+7))]’.

DEFINITION 3 [11]. Let D denote the domain of a function f : X—=Y. If z&X,
the W-cluster set of f at x, denoted WC(f ; X), is defined to be

WC(f ; £)=N{cl(fUNDY) : U E N ()},

DEFINITION 4 [1]. Let f:X—Y, x& X. The set D(f; z) consists of all points
y &Y such that f(UXNV#P for all U& N(x) and V& N(y).

In order to simplify our discussion, we will onl_y consider functions f: X—Y
where f is defined on all of X, and we will ignore the Hausdorff restrictions
placed on X and Y in Definition 1. It will be convenient to have the following

extension of Definition 2.
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DEFINITION 2" [5]. Let f: XY, x& X. The H-cluster set of f at x, deno-
ted HC(f ; x), is the set of all y&Y such that x & [f_l(V)]" for every V &

N(y). ,
The next two theorems give some useful characterizations of Definitions 3
and 2.

THEOREM 1.1. Let f: XY, x&€ X. Then the following are equivalent.
(L yeWC(; x). |

2) £ N()) accumulates at .

(3) f(N(x)) accumulates at y.

(4) There exists a filter F on X such that F —x and f(F )—y.

(5) There exists a net x,—x such that f(x, )—y.

PROOF. The equivalence of (1), (2), and (4) is shown in Theorem 2.2 of
[4]. The equivalence of (2) and (3) is trivial, and the equivalence of (4) and

(56) i1s well known (3, page 213].

THEOREM 1.2 [5, Theorem 4.2]. Let f: X—Y, x & X. Then the following are
equivalent.

(1) ye HC(S ; x).
(2) There exists a filterbase B on X\{x} such that F—x and f(F)—y.
(3 yE N{CIGWO\{x})) : U & N(x)}.

The proof of the following theorem is straightforward and hemce omitted.

THEOREM 1.3. Let f: XY, x < X.

(L) WC(f; x)=D(f; x).

@) LU ; 2 )CWC( ; %)

(3) HC(f ; xX)CWC(f ; x).

(4) If X and Y are first countable, then L(f ; x)=WC(S ; x).

Note that (4) and (1) of the above theorem show Theorems 6 and 7 of [1]
are merely restatements of Theorems 3.7 and 3.8 respectively of [8].

THEOREM 1.4. If f: XY, xE€ X, and Y is Ty, then WC(f ; x)\HC(f ; x)C
{f(x)}. |

PROOF. Assume yeWC(f:2\NHC(f;x). If we suppose y#f(x), then there
must exist V& N(y) and U & N(x) such that f (V)ﬂ(U\ {x})=¢, but f_l(V)

NU#@. This implies f (V)r']U {x}. Since Y is T, and y#f(x), there exists a
W & N(y) such that f(x) &W. Hence x&f (W) and {x} Cf (WﬂV). This
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implies f‘l(WﬂV)ﬂU =¢ and y & WC(f; x) which is a contradiction.

A function f: X—Y is said to be connected [8) if f(C) is connected in Y for
every connected set C in X. |

THEOREM 1.5. Let f: X—Y be connected with X locally connected and ¥ T,
If U\{x} is connected for every U& N(x), and x is a limit point of X, then

HC(f; x)=WC({ ; x).

PROOF. Theorem 4.4 of [5) shows f(x) & HC({f ;x), hence WC{; x)C
HC(f;x) by Theorem 1.4. Equality follows from Theorem 1.3, (3).

The following theorem will be useful in what follows.

THEOREM 1.6. [4, Theorem 2.3, (a)] Let f: X—>Y be connected with X lo-

cally connected and Y compact Hausdorff. Then WC(f ; x) is connected for every
x in X.

THEOREM 1.7. With the same hybotheses as in Theorem 1.6,
(1) Either HC(f ; x)=¢ or HC(f ; x)=WC(f ; x).
(2) If x is a lim:it point of X, then HC(f ; x)=WC(f; x).

PROOF. To show (1), assume HC(f;x)7#¢ and observe we need only show
JS(x) € HC(f ; x). If we suppose f(x) &€ HC(f; x), then WC(f; x)=HC( ; x)U
{f(x)} is a disconnection of WC(f : x), which is a contradiction, and we have
shown (1).

(2) follows from (1).

2. Funetions with closed graphs

In section 2 we will use C(f; x) to denote WC(f;x). If f:X-—Y, then the
graph of f, denoted Gr(f), is the subset {(x, f(x)) : x&E X} of XXY.

Our purpose in this section is to illustrate how cluster set techniques can be
used in general topology. Our principal tool will be the following theorem.

THEOREM 2.1. Let f: X—Y. Then Gr(f) is closed if and only if C(f; x)=
{f(x)} for every x &€ X.

PROOF. Necessity. Assume C(f; x)={f(x)} for every x& X, and let (x,y) &

CI(Gr(f)). Then there exists a net (x,, f(x,)) on Gr(f) such that (x,, f(x,))—
(%,y). This implies ¥, ,—x and f(x,)—y. Hence y&E C(f; x) by Theorem 1.1, (5).
We conclude y=F(x). (x,y) € Gr{f), and Gr(f) is closed. |

Sufficiency. Assume Gr(f) is closed and suppose y & C(f ; x). Then there exists
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a net x,—x such that f(x,)—y and hence (x,,(x,))—(%,3). Since Gr(f) is closed
we must have y=sf(x).

We will prove the follwing well known theorem [10, Exercise 16.10, page 130]
to 1llustrate cluster set technique.

THEOREM 2.2. Let f: XY withY compact. If Gr(f) is closed, then f is contin-
UOUS.

PROOF. Let x& X and let ¥V be an open neighborhood of f(x) in Y. Since f
has a closed graph, there must exist a U& N(x) such that f(UDNT\V)=¢.

Indeed, otherwise {cl(f(U)NIX\V): U& N(x)} is a collection of closed sets in

the compact subspace Y\V which satisfies the finite intersection property. This
implies C(f ; x) N(¥Y\Y)#¢, which is a contradiction, and the proof is complete.

We will only remark that if in the above theorem X is first countable and Y
1s countably compact, a similar technique can be used to show the same conclu-
sion. This i1s, however, another well known result [7, Theorem 2]. The follow-
ing result 1s perhaps not so well known.

THEOREM 2.3. Let f: XY be an opern mapping with X first countable and Y
a completely regular pseudocompact space. If Gr(f) is closed, then f is continuous.

PROOF. Suppose f is not continuous at x & X. Let {U } be a monotone dec-

reasing neighborhood base of open sets at x. There exists some open set V conta-
ining f(x) such that f(U )NY\CI(V))#¢ for every n. Let W be an open neigh-

borhood of (f(x) such that WCCI(W)CV and hence
Y\WDOCIY\CI(W))DY\VIOY\CI(V).

Let S=CI(¥\CI(W)). Observe that S is a completely regelar pseudocompact

subspase.

Now {f(U SNEN\CI(V))} is a descending sequence of open sets in S, hence

there exists a point y € r]ICIS W ONE\CI(V))). It follows from the relation

CL. U NEI\CIVDICCIFU DO)NT\W)
that y&C(f ; x ) N(Y\W), and this contradiction completes the proof.

We conclude with the following application to functional analysis. The term-
inology is the same as that used in [9].

THEOREM 2.4. Let X and Y be topological vector spaces whose topologies are
induced by a complete invariant metric, and let 4 : X—Y be a linear map which
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maps closed subsets of X onto closed subsets of Y. Then A4 is continuous if and

only if N(A)=4"1{0} is closed.

PROOF. Necessity is obvious. To show sufficiency, observe that N(A) closed

implies A_l{y} 1S closed for every y &Y. It now follows from the observation
CU:x)=N{fcl0)) : U N®)

that C(f ; (x)) for every x € X. The result now follows from Theorem 2.1 and

.the Closed Graph Theorem [9, page 50].
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