HYPERSURFACES OF A SASAKIAN MANIFOLD WITH ANTINORMAL (f, g, u, v, λ) -STRUCTURE I

By Mohd Shoeb

Introduction

K. Yano, and U-Hang Ki [1] introduced the concept of antinormality of (f, g, u, v, λ) -structure and obtained many useful results. Lim, J.K. and Choe, Y.W. [2] also defined the antinormality of (f, g, u, v, λ) -structure and investigated the necessary and sufficient condition for (f, g, u, v, λ) -structure to be antinormal.

The purpose of the present paper is to obtain few more conditions for antinormality of (f, g, u, v, λ) -structure.

1. Preliminaries

We consider a C^{∞} differentiable manifold with an (f, g, u, v, λ) -structure, that is, a Riemannian manifold with metric tensor g which admits a tensor field f of type (1,1), two 1-forms u and v and a function λ satisfying [3]

(1.1)
$$\overline{X} + X = u(X)U + vXV, \ f(X) \stackrel{\text{def}}{=} \overline{X},$$
(1.2)
$$g(\overline{X}, \overline{Y}) = g(X, Y) - u(X)u(Y) - v(X)v(Y),$$

$$(1.3) u(\overline{X}) = \lambda v(X),$$

$$(1.4) v(\overline{X}) = -\lambda u(X),$$

$$(1.5) \overline{U} = -\lambda V,$$

$$(1.6) \overline{V} = \lambda U,$$

(1.7)
$$u(U)=1-\lambda^2=v(V),$$

and

(1.8)
$$u(V) = 0 = v(U),$$

for arbitrary vector fields X and Y, U and V being vector fields defined by u(X)=g(U,X) and v(X)=g(V,X) respectively. If the tensor defined by

(1.9)
$$S(X,Y)=N(X,Y)+du(X,Y)U+dv(X,Y)V$$
,

N(X,Y) being the Nijenhuis tensor formed with f, vanishes, the (f,g,u,v,λ) structure is said to be normal [3].

We put

$$(1.10) \quad [f,f] \quad (X,Y) = (D_{\overline{X}}u)(Y) - (D_{\overline{Y}}u)(X) - u\{(D_Xf)Y\} - (D_Yf)(X)\}$$

$$+ \lambda\{(D_Xv)(Y) - (D_Vv)(X)\},$$

where D is the Riemannian connexion. If the tensor [f,f] vanishes, the (f,g,u,v,λ) -structure is said to be antinormal [2].

2. Hypersurfaces of a Sasakian Manifold

Let M be an orientable hypersurface of a Sasakian manifold \tilde{M}^{2n+1} . Then there is an (f, g, u, v, λ) -structure induced in M, having the following properties [2].

(2.1)
$$(D_{V}f)(Y) = -g(X,Y)U + u(Y)X - K(X,Y)V + k(X)v(Y),$$

(2.2)
$$(D_X u)(Y) = F(X,Y) - \lambda K(X,Y),$$

$$(2.3) (D_X v)(Y) = -K(X, \overline{Y}) + \lambda g(X, Y)$$

and

$$(2.4) D_X \lambda = K(X, U) - v(X),$$

where K(X,Y)=g(k(X),Y) is the second fundamental tensor in hypersurface M relative to \tilde{M}^{2n+1} .

Substituting (2.1), (2.2) and (2.3) into (1.10), we find,

(2.5)
$$[f,f] (X,Y) = K(Y,U)v(X) - K(X,U)v(Y).$$

Using (2.4) in (2.5), we get [2]

(2.6)
$$[f,f] (X,Y) = (D_{Y}\lambda)v(X) - (D_{X}\lambda)v(Y).$$

From (2.6) it is obvious that if λ is a constant, the induced (f, g, u, v, λ) -structure on M is antinormal. From [2], we know the following:

THEOREM A. Let M be an orientable hypersurface of a Sasakian manifold such that the function λ is not a constant. In order that the induced (f, g, u, v, λ) -structure be antinormal it is necessary and sufficient that kf+fk=0.

The condition kf+fk=0 is equivalent to

$$(2.7) k(\overline{X}) + k(\overline{X}) = 0$$

and

(2.8)
$$K(\overline{X},Y)-K(X,\overline{Y})=0.$$

And from [1], we know the following:

THEOREM B. In an orientable hypersurface M with an (f, g, u, v, λ) -structure of a Sasakian manifold such that $\lambda(1-\lambda^2)$ is almost every-where non-zero, the conditions

$$(2.9) K(\overline{X},Y) - K(X,\overline{Y}) = 0$$

and

(2.10)
$$S(X,Y) = 2v(X) \{D_v V - \lambda Y\} - 2v(Y) \{D_x V - \lambda X\}$$

are equivalent.

Combining Theorem [A] and Theorem [B] and using (2.3), we have

THEOREM (2.1). In an orientable hypersurface M of a Sasakian manifold, $\lambda = constant$, the induced (f, g, u, v, λ) -structure is antinormal if and only if (2.11) $S(X,Y) = 2v(X) \overline{kY} - 2v(Y) \overline{kX}$.

3. Some theorems on antinormal (f, g, u, v, λ) -structure

THEOREM 3.1. In an orientable hypersurface M, $\lambda \neq 0$, if the Nijenhuis tensor vanishes the induced $(f, g. u, v, \lambda)$ -structure is antinormal.

PROOF. Let the Nijenhuis tensor of M vanishes, we have

$$(3.1) N(X,Y) = (D_X f)(Y) - (D_{\overline{Y}} f)(X) - \overline{(D_X f)(Y)} + (\overline{D_Y f})(X) = 0.$$

Using (2.1) in above, we get

$$(3.2) \{K(\overline{Y}, X) - K(\overline{X}, Y)\}V + \{k(\overline{X}) - k(\overline{X})\}v(Y) - \{k(\overline{Y}) - k(\overline{Y})\}v(X) - 2g(\overline{X}, Y)U = 0.$$

Contracting (3.2) with respect to X and using (1.4), (1.5) and (1.6), we get $-2\lambda(K(U,X)-v(X))=0.$

By virtue of (2.4) the above equation reduces to

$$(3.3) D_{\mathbf{x}}\lambda = 0,$$

that is λ is a constant and hence the structure is antinormal.

THEOREM 3.2. In an orientable hypersurface M, $\lambda \neq constant$, the induced (f, g, u, v, λ) -structure is antinormal if and only if

(3.4)
$$(D_{\overline{X}}F)(Y,Z) + (D_{\overline{Y}}F)(Z,X) + (D_{\overline{Z}}F)(X,Y) = 2\{F(Y,X)u(Z) + F(Z,Y)u(X) + F(X,Z)u(Y)\},$$

where $F(X, Y) \stackrel{\text{def}}{=} g(\overline{X}, Y)$.

PROOF. From (2.1), we have

$$(3.5) (D_{\overline{X}}F)(Y,Z) = F(Y,X)u(Z) + F(X,Z)u(Y) - K(\overline{X},Y)v(Z) + K(\overline{X},Z)v(Y).$$

Taking cyclic permutation of (3.5), we get

$$(3.6) (D_{\overline{X}}F)(Y,Z) + (D_{\overline{Y}}F)(Z,X) + (D_{\overline{Z}}F)(X,Y) = 2\{F(Y,X)u(Z) + F(Z,Y)u(X) + F(X,Z)u(Y)\} + v(X)\{K(\overline{Z},Y) - K(\overline{Y},Z)\} + v(Y)\{K(\overline{X},Z) - K(\overline{Z},X)\} + v(Z)\{K(\overline{Y},X) - K(\overline{X},Y)\}.$$

Using Theorem [A] in (3.6), we get the result.

THEOREM 3.3. In an orientable hypersurface M, $\lambda \neq$ constant, the induced

 (f, g, u, v, λ) is antinormal if and only if

(3.7)
$$'N(X,Y,Z)+'N(Y,Z,X)+'N(Z,X,Y)=(D_{\overline{X}}F)(Y,Z)+(D_{\overline{Y}}F)(Z,X) + (D_{\overline{Z}}F)(X,Y),$$

where $N(X,Y,Z) \stackrel{\text{def}}{=} g(N(X,Y),Z)$.

PROOF. With the help of (2.1), we have

$$(3.8) 'N(X,Y,Z) = \{K(\overline{Y},X) - K(\overline{X},Y)\}v(Z) + \{K(\overline{X},Z) + K(X,\overline{Z})\}v(Y) - \{K(\overline{Y},Z) + K(Y,\overline{Z})\}v(X) - 2F(X,Y)u(Z).$$

Which gives

$$(3.9) 'N(X,Y,Z)+'N(Y,Z,X)+'N(Z,X,Y)=\{K(\overline{Y},X)-K(\overline{X},Y)\}v(Z) +\{K(\overline{Z},Y)-K(\overline{Y},Z)\}v(X)+\{K(\overline{X},Z)-K(\overline{Z},X)\}v(Y) +2\{F(Y,X)u(Z)+F(Z,Y)u(X)+F(X,Z)u(Y)\}.$$

In view of Theorem [A] and Theorem (3.2), (3.9) proves the statement.

PROPOSITION 3.1. In an orientable hypersurface M, the induced (f, g, u, v, λ) structure is antinormal if and only if

(3.10)
$$(D_X F) (Y, U) = (D_V F) (X, U)$$
.

PROOF. From (2.1) and (2.5), we get

$$(D_X F)(Y, U) - (D_Y F)(X, U) = [f, f](Y, X).$$

which proves the result.

THEOREM 3.4. In an orientable hypersurface M, $\lambda = constant$, the induced (f, g, u, v, λ) -structure is antinormal if and only if

(3.11)
$$S(X,Y,V)=N(X,Y,V)=(D_{\overline{X}}F)(Y,V)-(D_{X}F)(\overline{Y},V),$$

where $S(X,Y,Z) \stackrel{\text{def}}{=} g(S(X,Y),Z)$,

PROOF. Transvecting (1.9) with V and using (1.8), (2.3) and Theorem [A], we get

$$S(X,Y,V)='N(X,Y,V).$$

From (3.1), we have

(3.12) $N(X,Y,V) = (D_{\overline{X}}F)(Y,V) - (D_{\overline{Y}}F)(X,V) + (D_{X}F)(Y,\overline{V}) - (D_{Y}F)(X,\overline{V}).$ which, due to (3.10), implies (3.11).

PROPOSITION 3.2. In an orientable hypersurface M, $\lambda \neq 0$ and $\lambda \neq$ constant, the induced $(f, g, u. v, \lambda)$ -structure is antinormal if and only if

(3.13)
$$S(X,Y,V)=0=N(X,Y,V).$$

PROOF. Transvecting (2.11) with V and using (1.6), (2.5), we get

(3.14)
$$S(X,Y,V)=2\lambda[f,f](X,Y),$$

which proves the statement.

COROLLARY 3.1. In an orientable hypersurface M, $\lambda \neq 0$ and $\lambda \neq constant$, the induced (f, g, u, v, λ) -structure is antinormal if and only if

$$(3.15) (D_{\overline{X}}F)(Y,V) = (D_XF)(\overline{Y},V).$$

PROOF. Just follows from (3.11) and (3.13).

In an orientable hypersurface M, $\lambda \neq$ constant, with antinormal (f, g, u, v, λ) structure, we know [1]

$$(3.16) K(X,V) = \beta u(X)$$

and

$$(3.17) K(X,U) = \beta v(X),$$

where

$$\beta = \frac{K(U,V)}{1-\lambda_2}$$

THEOREM 3.5 β , as given in (3.18), is constant if and only if (3.19) $K(X, k\overline{Y} = \beta F(X, Y)$.

PROOF. Differentiating (3.17) and using (2.2), (2.3), (2.8) and

(3.20)
$$(D_X K)(Y,Z) - (D_Y K)(X,Z) = 0,$$

we get,

$$(D_X\beta)v(Y)=(D_Y\beta)v(X)$$

which, on putting Y=V, gives

$$(D_X\beta)(1-\lambda^2)=(D_V\beta)v(X),$$

that is $D_X\beta$ is proportional to v(X) and hence we can write

$$(3.21) D_X \beta = \rho v(X),$$

where ρ is a function.

Now differentiating (3.16) and using (2.2), (2.3), (2.8), (3.20) and (3.21), we get

$$(3.22) \qquad \rho\{v(X)u(Y)-v(Y)u(X)\}=2\beta(F(X,Y)-2K(X,k\overline{Y}))$$

From (3.22) it is clear that $\rho=0$, that is, $\beta=$ constant if and only if (3.19) holds.

Banaras Hindu University Varanasi-221005, India

REFERENCES

- [1] Yano, K. and U-Hang Ki, Manifolds with antinormal (f, g, u, v, λ)-structure, Kodai Math. Sem. Rep. Vol. 25 (1973) pp. 48-62.
- [2] Lim, J.K. and Choe, Y.W., Note on compact hypersurfaces in a unit sphere S^{2n+1} , Kyungpook Math. J.Vol. 12, No.2 Dec. 1972.
- [3] Yano, K. and Okumura, M., On (f, g, u, v, λ) -structure, Kodai Math. Sem. Rep. 22 (1970), pp. 401-423.