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TRANSFINITE SEPARATION AXIOMS IN TOPOLOGICAL SPACES

By Paul D. Humke and Arthur Solomon

1. Infroduction

Using finite induction, Viglino [6] defined a new collection of separation ax-
ioms each of which implies Hausdorff separation and in turn is implied by
complete Hausdorff (or functional Hausdorff) separation as follows: A topological
space X IS Tn(n & N=natural] numbers) if whenever x and y are distinct points

of X, there is a colleciion of open sets {U,;:¢=0,1,--,z—1} such that

1. for 0<7<w,x &€ U, and y & cl(U,) [cl=closure],

2. cl(U,_,) CU, for 1<z <.

In the same paper, Viglino presented examples to show that there are spaces
which are T but not T, 41 for every finite number #, and also that there are
nonregular spaces which are Tﬂ for every n. In Section 2 of this paper we gen-
eralize Viglino’s definitions using ordertype indices, and then present examples to
show that for ordinal number indices the classes of topological spaces so defined
are distinct. Example 3 of this section not only generalizes the corresponding
example due to Viglino, but is considerably simpler. In the remainder of the
paper we investigate the relationships between these new separation axioms and
the standard separation axioms of Hausdorff, Tychonoff, and Urysohn and
construct topological extensions of spaces endowed with these new separation ax-
ioms which do not disturb the dispersion character of the spaces.

In this section we make those definitions needed in the remainder of the paper,
explore the more elementary relationships concerning these definitions and

present three examples illustrating the topological inequivalence of the new
properties.

If « is an order type, a topological space X is defined to be T, if whenever x

and y are distinct points of X, there is a collection of open sets {U ﬁ:5<a'} such
that

1. for 0<p<a, & Uy and y & cl(Uﬁ),
2. cl(U 5) C U, whenever 0<g<r<a.
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Such a collection of open sets will be called a T -ckain containing x and excl-
uding y. A topological space X is defined to be B if whenever x and y are
distinct points of X there is a neighborhood basis {U It 8L} at x for which
cl (U ﬁ)CU , whenever 0<8<y<a. The space X is S, if whenever xr & X and
U is an open set containing x, there is a collection of neighborhoods of z,
{U ﬁ:5<a'} such that cl(U 5)CUTCU for 0<B <y <a. We denote the order types of
the sets of natural numbers, rational numbers, and real numbers with their
usual ordering by w,n, and A respectively. If « is an ordertype || will denote
the cardinality of «. Definitions of the separation axiom of Hausdorff (and
of the remaining separation axioms refered to in this paper) can be found in [1].
A topological space X is Urysohn if whenever x and y are distinct points of
X, there are corresponding open sets U and V such that x&U, y&€V, and
cl(U)Ncl(V)=¢. A topological space X is defined to be completely Hausdorff
1if whenever # and y are distinct points of X there is a continuous function f
from X into the continuum [0, 1] such that f(x)=0 and f(y)=1. Certain immediate

consequences of our definitions are listed below.

1. The T, and T, separation axioms are equivalent to the separation axioms

of Hausdorff and Urysohn.
2. If the T space X is S then X is T,. Also, if X is B, then X is S..

3. If |x|=1 and the T space X i1s S, then X is regular (i.e. Ty).
4. If the topological space X is T , (respectively B p OF Sﬂ) then X is Ta, (res-
pectively B, or S ) for every countable ordertype c.

The first two examples we present indicate that one cannot infer a stronger
separation property from a weaker separation property and that this degree of
distinction is quite independent of the ordertype index. The third example pro-
vides at the same time a generalization of an example given by Viglino [6] and
a much simpler construction which yields this generalized result.

EXAMPLE 1. There is a space X which s Sﬂ at every point but is not B . Jor
any countable ordertype .

PROOF. Let X be the Euclidean plane with one line identified to a point.
Then X i1s Sﬂ at every point but as X is not first countable [1] it is not B ., for
any countable ordertype «.
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EXAMPLE 2. There is a topological space which is Tr} but s not S, for any

nonzero ordertybe c.

PROOF. Let X be the set of real numbers and let a subbasis for the topology
on X consist of {open intervals} UQ [Q=rationals]. Then X is Tﬂ but X is not

regular. The conclusion follows.
For example 3 we adapt a technique by P. Roy [4].

EXAMPLE 3. Given any ordinal a>0 there is ¢ T, topological space which is
Ta, but not Ta,_,_l.

PROOF. Let X be a T, topological space of little inductive dimension zero
having the property that there are 2|a| disjoint dense subsets of X. (If |a|<
let X be the irrationals for example. ) First, we order these disjoint dense subsets
of X as {Xﬁ:O£ﬁ<2a’}, and then define X, =X, Let Y=5L§'JMCX5>< {B}). We

define a topology on ¥ by defining a neighborhood system at every point (¥, 8)
of ¥ which uses both the original topology from X and the ordinal level g at
which (9, 3) resides. Let U be an open set in X which contains y.
i. If B1s odd (0<A<2x), define U*= {(x, o’):xEUﬂXJ and 8—-1<<g<B+1}.
ii. If B is even and 0<A<2«, define Uy*= {(x,0):2€UNX, and r<c<p}
where 7 is an ordinal less than A. Such sets will be refered to as sets of the

form U™.

iii. If 8=0, define U*={(x,0):x € UNX,}.
Then a neighborhood basis of (y,48) in Y consists of sets of the form U* where
I7 is a neighborhood of y 1n X.

We must now demonstrate that ¥ has the desired properties. Let (¥, 8;) and
(¥, B,) be distinct points in ¥. As X is both T, and of little inductive dimension
zero, it follows readily thatY is Ta between (¥, ;) and (¥,, 8,) if y,7y,. Hence
we may assume y,=y, and we denote their common value by y.

As (9, 8,)#(9, B8,) 1t also follows that 8,=0and 8,=2a. If U, = {(x,0): 027},
then {U 7:05_7 <a} isa T ,-chain about (y,0) which excludes (y,2a). To show there
1S No ’Ta . ;-chain about (¥,0) which excludes (3, 2cr) we assume there is such a
chain {V r:OSrSa} and obtain a contradiction. As V|, is an open subset of Y
containing (9,0 there is an open set ¥V’ in X containing y such that (VW NX )X
(0}CV,. But, as X, is dense in X, and cl(V )CV,, it follows that (V'NXq)XA{1}
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CV,. Inductively, then if follows that (V"NX r))( {r}] CVT for 0<y<2«a. However,
V'NX,,=V'NX, and hence contains y. This shows that (y,2a) &V, and this
contradiction finishes the proof that ¥ is not T, ;.

To close this section we prove three propositions which indicate some relation-
- ships between these new separation axioms and the standard sepraration axioms.

PROPOSITION 1. A space X is completely Hausdorff if and only if X is T.

PROOF. Let x; and x, be distinct points of X. If X is completely Hausdorff,
then there is a continuous function f:X—|[0,1] such that f(x1)=0 and f(x,)=1.

Let U, =f""([0,7)) where r&QN(0, 1). As f is continuous and QN(0, 1) has
ordertype 7, {U,:r €QN(0,1)} satisfies the properties required of a space to be
, and %, were arbitrary, the necessity is proved.

On the other hand, suppose that X is Tﬂ and let x, and #, be distinct points
of X. As X is Tn there is a collection of open sets {Uq . g € QN(0, 1)} such that

L. % €U _for g €QN(O, 1,

i, x, €& cl(Uq) for g€ QN(0,1), and

1. 1f q, <4 and both g, and g, are in QN (0,1), then cl(Uql)f;U "
Adapting a technique used to prove Urysohn’s chanacterization of normality we

define f: X—[0,1] as

Tn between x;, and x,. As x

inflg:q€U} it xEUl,
1 if x&&U,.
Then f is continuous and f(x,)=0 while f(x,)=1. This completes the proof of

f(x)={

Proposition 1.

Using Proposition 1 and the evident fact that if X is T, then X is T_ﬂ we have

the following corollary.

COROLLARY 1.1. A space is Tﬂ if and only if it is T,.

PROPOSITION 2. A space X s Bﬂ if and only if X is first countable and

completely reguiar.

PROOF. Suppose X is Bn’ let xt& X and let K be a closed subset of X not
containing x. As X is Bn' there is a base at x, {U 0 = QMN0, 1)}, such that

1. UqCX—K for every ¢ €QN(0,1), and

2. U, HCU, if ¢,,4,€QN(0, 1) and g, <g,.
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If we define f:X—[0,1] exactly as in the proof of Proposition 1, then f is con-

tinuous and f(x)=0 while f(KX)=1. Finally, the base at x, {U 4 E QN (0, D},
1s countable and the necessity is proved.

Now, suppose X is completely regular and first countable, and let r & X.
Then there exists a countable base {U ,:r=12,} at x for which cl(U, 4 l)CUﬂ

for n=1,2,-- As X is completely regular, for each z#=1,2, - there is a contin-
uous function f, : X—[0,1] such that f,(x)=0 and f, (X—-U,)=1. Define f: X—

= X £,00/2".

Then £ is continuous and f(x)=0. If we let U =f"([0,)) for ¢€QN(0,1) then
U Y € QN(0,1)} is a base at x of order type 7, and if ¢,<g, then cl(U ql)C
U 0. Consequently, X is Bn at x and the proof is complete.

The analogue of propositions 1 and 2 for the separation axiom S . is Proposition
3 below and the proof is similar to those of the two aforestated propositions.

PROPOSITION 3. A space X is Srz if and only if X is completely regular.

Propositions 2 and 3 can be combined to yield the following result.

PROPOSITION 4. A space X is BT? if and only if X is Srz and Bm.

3. Expansions of T _ spaces

In [2] E. Hewitt defined the notion of the dzspersion character of a topological
space X to be the least cardinal number of a non-void open subset of X and
denoted the dispersion character of X by 4(X). In the same paper, properties of
topological spaces were investigated relative to expansions of those spaces which
retained the dispersion character of the original spaces. (If X, and X, are topo-
logical spaces with the same underlying set such that the topology from X, is

contained in the topology from X,, then X, is said to be an expansion of X,.)
In particular, Hewitt notes that many of the usual topological properties are not
retained by expansions [Theorem 3] and suggests the question of whether a
Urysohn space can be expanded to a regular space without changing the disper-
sion character. M. Powderly [3] answered this question in the negative. In this
section we answer a natural question by showing that if X, is a T, topological

space then there is an expansion X, of X; which is T for every «, and 4(X)
=4(X>).
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PROPOSITION 5. Every T, topological space can be expanded to a topological

shace which is fo for every o without changing the dispersion character.

PROOF. Consider the set E of all expansions X* of X such that A(X*)=4(X).
If X, and X, are in E, we define X,;<X, if X, is an expansion of X;. Then

(E, <) is a partially ordered set and we let C be a chain in E. If X*&C we
denote the topology on X* by T(X*). Then as C is a chain, Xyer‘ T(X*) is a

basis for a topology on the set X. Further, if U EX%%‘(X*) then the cardinality
of U 1s at least as large as 4(X) because A(X*)=4(X) for every X*&E. Hence

the topological space generated be%CT(X*) on the set X is a maximal element
of C. It follows from the Hausdorff Maximal Principle that (%, <) has maximal

elements and we let X denote such a maximal element. We will show that if
x, and xze}? , there is an open set U in X such that x, €U, x,&clU) and
U=cl(U). Suppose to the contrary that there are points x; and x, in X such
that no such open set U exists. As X 1s T, there 1s an open set V in X such

)

that x, €V and x,&V, and as X is an expansion of X,V is also open in X.

Define a new topology on the set X as
T*={W,UCI(VNW,) : W, T(X) for i=1,2}.

The set T* is a topology on the set X and the resulting topological space X* is
a proper expansion on X. However, if W is open in X and VNW is a nonempty
open set of X then the cardinal number of VAW is at least as large as 4(X)=

A(X). I_t follows that A4(X*)=4(X) and this contradicts the maximality of X.
Finally, if a is an ordinal number we must show X is T, If x, and x, are in

X, then there is an open-closed set U such that 2, &U and x,& U. If we define
Ugy=U for 0<(F<a then the sequence {U g 0<B<a} i1s a required sequence se-
parating x, and x, and the proposition is proved.

Although the expansion X of X in the previous proposition contains a plethora
of a open-closed sets it is not necessarily of little inductive dimension zero. If it
were, then X would be regular, but M. Powderly [3] has provided an example
of Urysohn space which can not be expanded to a regular space without chang-
ing the dispersion character.

Western Illinois University
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