*-U-REGULAR RING

By V. N. Dixit

1. Preliminary definitions and results

DEFINITIONS 1. A ring R with unity 1 is called *U-regular* if for every a in R there exists a unit u in R such that aua=a

2. A *-ring is a ring with an involution $x \longrightarrow x^*$:

$$(x^*)^* = x$$
, $(x+y)^* = x^* + y^*$, $(xy)^* = y^*x^*$.

- 3. An element e in R is called *projection* if $e=e^*$ and $e^2=e$.
- 4. The involution of a *-ring is said to be proper if $a*a=0 \Longrightarrow a=0$.
- 5. An element a in R such that $aa^*a=a$ is called partial isometry.
- 6. A *-U-regular ring is a U-regular ring with proper involution.
- 7. An idempotent e is called normal if $e^*e = ee^*$.

The main purpose of this paper is to prove the theorem:

"A Commutative U--regular ring R with a suitable involution is a *-U-regular ring if ab=0 and aua=ava, a,b, units u,v in R."

Thus we make the conditions that R is *-ring and *-regular, superfluous, assumed in proposition 3 [1, pp. 229], which is as follows:

If R is a *-ring with unity, the following conditions are equivalent:

- (i) R is *-regular
- (ii) for each $x \in \mathbb{R}$, there exists a projection e such that Rx = Re.
- (iii) R is regular and is a Rickart *-ring.

The notations and conventions are as in Sterling K-Berberian [1].

We shall prove few simple results, R will denote commutative U-regular ring.

- R_1 . aua=ava, u,v units in R, then au=av. The proof is trivial.
- R_2 . (a+1-au) is invertible in R.

PROOF. There are units w in R such that (a+1-au)w(a+1-au)=a+1-au. Multiplying the above equations by au and (1-au) we get awa=a and w(1-au)=1-au respectively. From R_1 we get au=aw. Also w(a+1-au)=wa+1-au=1. Define $*:R\longrightarrow R$ by $a\longrightarrow a^*$, where $a^*=au(a+1-au)^{-1}$, aua=a.

The mapping is well defined from R_1 and R_2 .

 R_3 . $a^*au=a^*$, since au is idempotent.

 R_a . aa*a=a, since a*(a+1-au)=au and so a*a=au. Hence the result.

R₅.
$$a^* = au(a+1-au)^{-1} = a^*a(a+1-a^*a)^{-1}$$
 (from R₄).

 R_6 . $a^*v = au$ if $a^*va^* = a^*$. since $a^*v = (a^*au)v = (a^*a^*a)v = (a^*va^*)a = a^*a = au$ (from R_3 and R_4).

From the above results we deduce

(i)
$$a^{**}=a$$
 (ii) $(a+b)^*=a^*+b^*$ if $ab=0$, $aua=ava=a$

(iii)
$$(ab)^* = a^*b^*$$
 (iv) $a^*a = 0 \implies a = 0$.

R is U-regular, so $a^*va=a^*$, $a^* \in R$.

$$a(a^*+1-a^*v)=a(a^*+1-au)$$
 (from R_6), $aa^*=au$ (from R_4)= a^*v (from R_6)

Hence
$$a=a*v(a*+1-a*v)^{-1}=(a*)*$$
.

For (ii):

Since ab=0 implies a*b=0=ab*, from R_A we get

$$(a+b)(a+b)*(a+b)=(a+b)(a*+b*)(a+b)$$

So R₁ implies
$$(a+b)(a+b)*=(a+b)(a*+b*)=aa*+bb*$$

$$=aa^{*}(b+1-bb^{*})+bb^{*}(a+1-aa^{*}) \tag{A}$$

Also
$$(a+b)+1-(a+b)(a+b)*=(b+1-bb*)(a+1-aa*)$$
 (B)

From (A) and (B) we get $(a+b)^*=a^*+b^*$.

For (iii):

$$(ab)(a*b*)(ab) = (aa*a)(bb*b) = ab = ab(ab)*(ab)$$

Hence $ab \ a^*b^* = ab(ab)^*$ from R_1 . $= (ab)^* \{ab+1-(ab)(ab)^*\}$ from (R_5)

Now
$$ab = (ab)(ab)*(ab) = (ab)(ab)*\{ab+1-(ab)(ab)*\} = ab \ a*b*\{ab+1-(ab)(ab)*\}$$

$$=ab(ab)*(a+1-aa*)(b+1-bb*)$$

So
$$(ab)(a*b*)\{ab+1-(ab)(ab)*\}=ab(ab)*(a+1-aa*)(b+1-bb*)$$

$$\implies a*b* = aba*b*(a+1-aa*)^{-1}(b+1-bb*)^{-1} = (ab)(ab)*\{ab+1-(ab)(ab)*\}^{-1} = ab.$$

Therefore *U*-regular ring with an involution $a \rightarrow a^* = au(a+1-au)^{-1}$ is *-*U*-regular ring, since involution is proper from (iv), because

$$a^*a=0\Longrightarrow aa^*a=0\Longrightarrow a=0$$
 (from R_4).

Hence we get the following theorem:

In a commutative U-regular ring R with ab=0, aua=ava=a and $*:R\to R$ defined by $a\to a^*=au(a+1-au)^{-1}$, the following results are true.

(i) R is *-U-regular ring.

(ii) every element it is partial isometry (from R₄)

Thus Prop. 2 [1, pp. 10] "In a*-ring with proper involution, b is a partial isometry $\Longrightarrow b*b$ is a projection" becomes trivial here.

(iii) A normal idempotent is projection.

i.e. to prove $e=e^*$, it suffices to prove $e=e^*e$.

$$(e^*e-e)^*(e^*e-e)=0\Longrightarrow e^*e-e=0\Longrightarrow e^*e=e$$
 (from iv).

University of Delhi Delhi-110007 India

REFERENCE

[1] Sterling K-Berberian, Bae *-ring, Springer-Verlag, Band 195, (1971)