Kyungpook Math. J.
Volume 17, Number 1
June, 1977

ON MINIMAL BITOPOLOGICAL SPACES

By T.G. Raghavan and L. L. Reilly

1. Infroduction

If X is a set and L is the set of all topologies on X, then it is well known
that L is a complemented complete atomic lattice and L is non-modular if the
cardinality of X is at least three, see Steiner [9] for example. In this paper
we discuss the notion of minimal bitopological spaces in the partially ordered set
LXL, and obtain characterizations of such spaces for various bitopological
properties. We now introduce the necessary terms and notation.

In the bitopological space(X, 97, % ), a non-empty subset # of £ ((1=1,2) is
a g open filter if # satisfies

() p & F

(DifU, VeHF thenU NVeF

(ii1) if GE 9 and GOU for some U € % then G & . #.

If, instead of (i), (i1) and (iii) % satisfies (i) and (iv) if U, V& % there isa
W & % such that WCUNV, then % is a 4 open filterbase. |
If B is a filterbase on (X, .7}, %) the % adherence of B is defined by
% ad(B)=N{Z% cl U :U&BhB}
(Throughout this paper the .97 closure of the set A is denoted by %7 cl A.)

The following definition was first given by Weston [10] who used the term
“consistent”. (X, . %], % ) is pairwise Hausdorff if for each pair of distinct points
x and ¥y in X there is a 9] open setU and a %, open set V such that x & U,
y&V and U and V are disjoint. If this disjointness condition can be replaced
by the stronger condition % cl UN 4] cl V=¢, then (X, 9], % ) is pairwise
Urysohn. (X, 97, % ) is pairwise completely Hausdorff if for each pair of
distinct points x and y in X there is a function f:X—[0,1] such that f(x)z

f(») and f is % upper semicontinuous (henceforth abbreviated as u.s.c.) and
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7 lower semi-continuous (l.s.c.) where 2,7 = 1,2 and 7¢547.

v

The next two separation properties were introduced by Kelly [7]. (X, %, % )
is pairwise regular if for each point x in X and each .7 closed set P such that
x & P there is a .7 open set U and a % open set V disjoint from U such that
x &€ U and PCV, wherei, j=1,2and 7#y. (X, %, % ) is pairwise normal if for
each 9] closed set A and % closed set B disjoint from A there isa 9] open set
V containing Band a .% open set U disjoint from V containing A. Following

Fletcher [4] we say that (X, %], %) is pairwise completely regular if for each
7 closed set C and each point x €& C there is a function f: X—[0,1] such that

Fy

f(C)=1, f(x)=0 and f is & u.s.c. and Z ls.c., where ¢,7=1,2 and ¢#;j.

2. Pairwise Hausdorff pairwise compact spaces

In this section we show that the delicate position of the compact Hausdorff
topology in the lattice & of topologies on X carries over to the bitopological
situation. Fletcher, Hoyle and Patty [5] call a cover Z of (X, 7], % ) pairwise

open if UCH9T U % and if Z contains a non-empty member of .7 and a non-
empty member of % . If every (countable) pairwise open cover of (X, .9, % )
has a finite subcover the space is said to be pairwise (countably) compact. If
. (X, 9, % )—, #, %) is a map between bitopological spaces we say f is
pairwise continuous (respectively; closed, open, homeomorphism) if f: (X, 97)—
Y,¥) and f: (X, FH)—X, %) are continuous (respectively; closed, open,
homeomorphisms).

We need the following two results. The first is due to Weston [10], and the
second is [.emma 3 of Fletcher, Hoyle and Patty [5]. Note that in Proposition 2
A needs to be a proper subset of X.

PROPOSITION 1. If (X, 97..% ) is pairwise Hausdorff and Ais a 9y compact
subset of X then A is 7 closed.

PROPOSITION 2. If (X, 97, % ) is pairwise compact aend A is a F; closed
proper subset of X them A is 75 compact. |

THEOREM 1. If (X,J9], %) is pairwise compact, .(Y , I, F) is pairwise
Hausdorff and f: (X, 97, % )—X,%, %) is a pairwise conlinuous surjection,

then (a) f is patrwise closed (b) if f is injective, [ is a patrwise homeomorphism.
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PROOF. (a) If Aisa 9] closed proper subset of X, then it is % compact by
Proposition 2. Hence f(A) is % compact, and thus % closed by Proposition 1.
If A=X, then f(4)=Y, and so is % closed. Thus f:(X, F)—T, F) is
closed, and similarly for f: (X, % )—-{, F%).

(b) is immediate, since f: (X, 7 )—(, %) is a closed continuous bijection
and therefore a homeomorphism, for 7=1,2. |

We call the bitopological space (X, .9, % ) minimal pairwise Hausdorff if it is
pairwise Hausdorff and if (X, 7, F; ) is pairwise Hausdorff with .7, C .97 and
Jy C % then 4 =9 and F;, =.% . Minimality of other bitopological properties

1s similarly defined, and maximality has the obvious definition.

THEOREM 2. FEvery patrwise compact pairwise Hausdorff bitopological space is

maximal pairwise compact and minimal pairwise Hausdorff.

PROOF. Let (X, 9], % ) be pairwise compact and pairwise Hausdorff. Then if
(X, %, %) properly contains (X, .7, % ), (X, %, %) is not pairwise compact.
For otherwise, the previous theorem implies that the identity function (X, %, %)
—(X, 97, % ) is a pairwise homeomorphism, contradicting the hypothesis of
proper containment. Similarly, if (X,.97, %) properly contains (X,Z, %),
then (X,Z,, %) is not pairwise Hausdorff.

A similar set of results can be used to show that every pairwise countably
compact pairwise Hausdorff first countable bitopological space is maximal pair-

wise countably compact and minimal pairwise Hausdorff first countable.

EXAMPLE. Let X be any infinite set, ;7 be the cofinite _tOpology on X and
7% be the discrete topology on X. Certainly (X,.%;, % ) is pairwise Hausdorff.
We claim it is minimal pairwise Hausdorff. Since (X,.%, %) pairwise Hausdorff
implies that (X,%%7) is T, for 7=1,2 and (X, 9}) is minimal T';,, we cannot have
% properly contained in 7 and still have (X, %, %) pairwise Hausdorff, for
%% any topology on X. We fix 97, and consider a topology 7, properly contained
in .%,. Choose .Z; to be one of the anti-atoms in the lattice £ of topologies on
X. So .7, is an ultraspace on X, so is either a principal or nonprincipal ultra-
space, see Steiner [9]. An ultraspace is T; if and only if 1t is nonprincipal,
and (X, .97, %) pairwise Hausdorff requires (X, %) to be 9. Thus 5} is
a nonprincipal ultraspace on X, so that % is of the form F(X—{x})UZ
where F(X— {x}) is the collection of all subsets of X which do not contain «x
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and Z is a nonprincipal ultrafilter on X. Now any member of Z being an
infinite subset of X meets every member of .7;. Thus every .7 open set meets

every T, open set that contains z. Thus (X, %, %) is not pairwise Hausdorff,
so that (X, ], % ) is minimal pairwise Hausdorff. We observe that(X, .7, %)
is pairwise compact, so that Theorem 2 immediately implies that it is minimal
pairwise Hausdorff.

Fletcher, Hoyle and Patty [5, Example 4] give another example of a pairwise
Hausdorff pairwise compact space.

3. Filterbase characterizations

In this section we obtain filterbase characterizations of several minimal bitopo-
logical spaces. Related topological results have been discussed extensively by
Berri [1], Berri and Sorgenfrey [2], Bourbaki [3], Herrlich [6] and Scarbor-

ough (8].
In the following definitions, & is a % filterbase on (X,.9], %), and 7,5

— ]-1 21 Z'#j'

DEFINITION 1. % is & Urysohn with respect to % if for each point p &
I~ ad (&) there is a % open set U containing p and a set V in & such that

7 cd UN F cl V=¢.

DEFINITION 2. % is 9 completely Hausdorff with respect to % if for each
point p & 7 ad (&) there isa .9 open set U containing #, a setV in % and a
function f : X—[0,1] such that f(U)=1, f(V)=0and fis 4 l.s.c. and & u.s.c.

DEFINITION 3. % is % regular with respect to J if for each U &€ & there
is a V&% such that 4 cl VCU.

DEFINITION 4. % is J completely regular with respect to 9~ if for each

U there is a Ve and a function f: X—[0,1] such that f(V)=0, F(X—
U)=1 and f is 4 u.s.c. and 9 ls.c.

THEOREM 3. If (X, 77, % ) is pairwise Hausdorff, the following are equiva-

lent.
(@) (X, F{, F) is minimal pairwise Hausdorff.

(b) Every F open fillerbase on X with a unique 9. adherent point p is I, con-
vergent to p, where 1,j=1,2, i#j.

REMARK. Condition (b) of Theorem 3 states that if & isa .9] open filterbase
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with a unique % adherent point p, and if &,isa % open filterbase with the
same point p as its unique 47 adherent point then % ; 18 J] convergent to p and
%, is 4 convergent to p. We observe that this sharing of the point p applies
also to our later characterizations of minimal bitopological spaces in Theorems
4, 5 and 6.

PROOF of Theorem 3.

(a) implies (b). Let (X, 97, % ) be minimal pairwise Hausdorff and & bea 7~
open filterbase with unique % adherent point p. Let % <x>denote the collection
of all & open neighbourhoods of x. Let ={U: U&7, pEUIU{VUB: Ve
T <p>, BeE H#} where ﬁ; is the filter generated by %, for 7=1,2. Clearly (X,
i, F) satisfies S C 9] and 4 C . Let x bea point of X distinct from p.
Then x is not a 7 adherent point of % , so that there is a V & & {x) such that
VN B=¢ for some B& # ;. Since (X, 9], ) is pairwise Hausdorff, there is a
Ue 7 <p> and a We L <{x) such that UNW=¢. Now VNOW &.%<z>
since VW & 7 <x> and p&EVNW. Moreover, UUB& % <p>, and VNW)N
(UUB)=¢. Also if x and y are different points of X each distinct from p it is
clear that there isa % open set U anda % open set V with x&U, y&V and

UNV=¢. Hence (X, ¥, %) is pairwise Hausdorff. By the minimality of (X, .77,
J5 ) we have $=9] and %=.9%. In particular, F<p>=5{p), so that
Ue g <{p> implies U ¥ <p>. Hence UDB for some B& F , so that the
filterbase & is 4 convergent to p. |

(b) implies (a). Let (X, %, %) be pairwise Hausdorff such that #C.9] and
S 7 . We show that =7 by -proving that 5@@)=ﬁ(p> for each point
p1n X,7=1,2. Let p be any point in X, then % <(»>is a F open filterbase.
Now p is the only 4 adherent point of #<{p), since F ¢l ACY cl 4and (X,
1, S) is pairwise Hausdorff. Therefore, by condition (b), #<{p) is F convergent

to p. Hence Fp>DT <{p). Clearly FHp)CF <p), so that F<p>=F <p> as
desired.

In the following theorem, G denotes one of the properties Urysohn, completely
Hausdorff, regular or completely regular.

THEOREM 4. Let (X, 97, %) be a pairwise G bitopological space. Then the

following are equivalent.
(a) (X, 5], FH) is minimal pairwise G.
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(b) Every & open filterbase on X which is 9 G with respect to 9 and which
has a unique 9. adherent point p, is J. convergent to p, where i,j=1,2, i#j.

PROOF. (a) implies (b). Let (X, J;,.% ) be minimal pairwise G, and & . bea
7 open filterbase on X which is .4 G with respect to . and which has a unique
% adherent point p. Let %% be the filter generated by B, and as in the proof
of Theorem 3 we define the topology Y on Xby ¥%={U: U&7, p&&UU{VU
B:Ves <p>, B&€ F}, for i=1,2. If we show that (X, A, F) is pairwise G,
then %= by the minimality of (X, %7, % ). Again as in the proof of Theorem
3, this implies that &, is % convergent to p. We discuss the cases separately.

(i) G=Urysohn. It i1s clear that if x and y are distinct points of X both dif-
ferent from p then they can be separated by appropriate sets. Now let x be
distinct from p. Since #;is & Urysohn with respect to .7 there isa U& .9
<x> such that .Z' clUN & cl B=¢ for some B in % . Since (X, 7,7 ) is pair-
wise Urysohn there isaV e 7<) and a W& .S <x> suchthat & cl WNF
clV=¢. Then I cl(UNW)=9 cl(UNW ), andsincep &€V UBwe have .7 cl(V
UB)=Y% cl (VUB). Furthermore, % cl UNW)INS cl (WUB)=¢. Hence (X,
Y, %) is pairwise Urysohn.

(ii)) G=Completely Hausdorff. First suppose that x is distinct from p. Since
& ,1s F completely Hausdorff with respect to & thereisaU € .F <x>, some

B& %, and a function f: X—[0,1] such that f(U)=1, f(B)=0 and f is & Ls.
c. and 4 u.s.c. Then f(p)=0. For otherwise, let f(p)=k>0. Let L=[k/2, 1].
Since f is  Lsoc., (L) 1s % open, and f~(L)NB=¢ implies that p&& 7 cl
B, which contradicts {#} = ad (#,). Now f is & l.s.c. at the point p, for
pe X and F(X)CI[0,1]. Sincefis.Z u.s.c., for each £2>0 there is a .7 open
set V such that p€V and f(V)C[0,k). Now f(B)=0 implies f(VUB)CI[O0, k),
and VUB is % open, so thatf is & u.s.c. at the point p. If z is some point
other than p, two cases arise. If f(2)=0, then z€ X, f(X)CI[0,1] and X 1s .%
open. If f(z)=k>0, then since fis 4 Ls.c. there isa 4 open set V such that

z&€V and f(V)C(r,1], for each r such that 0<r <k Moreover p&V as f(p)=0.
Thus V is % open. Hence, in both cases, fis %% l.s.c. at z. Similarly we can

show that fis & u.s.c. at z. |
Now suppose that x and y are both different from p. Since &, is % completely
Hausdorff with respectto %, thereisaU & . <x>, some B& % ;and a func-
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tion f . X—[0,1] such that fW=1, f(B)=0and fis .7 u.s.c. and % Ls.c. If
Ff(y)#1 then f will serve as the desired function. If f(y)=1 the situation is more
difficult. Since (X, .97, % ) is pairwise completely Hausdorff there is a function

g X—[0,1] which is J u.s.c. and Z Ls.c. and g(x)#Zg(y). Now let k(z)=
f(z)-g(z) forall z& X. Then 2 is 7 u.s.c. and .Z l.s.c., and k(x)=g(x) while
h(y)=g(y) so that A(x)#h(y). As before f(»)=0, so h(»)=0. Then kis 5 ls.
c. atp, since A(X)CI[0,1] and X € .%. Since 2is . u.s.c., for each 2>0 there
is a 7 opensetV with p&V and 2(V)CI[0, Z). Moreover, k(B)=0 since f(B)=0.
Thus 2(VUB)CI[0,%), and VUB is &, open, so that & is .9"1. u.s.c. atp. If z is
some point other than p, a similar argument to that above shows that %2 is %
l.s.c. at zand % u.s.c. at z.

Thus any pair of points of X can be separated by a suitable function, so that
(X, %, &%) is pairwise completely Hausdorff.

(i1i) G=regular. The pairwise regularity of (X, %, %) at any point other than
p tollows immediately from that of (X, .97, % ). Let VUB be a % open neigh-
bourhood of p, where V& .9 <p> and B& %,. Since (X, ¥, %) is pairwise
regular there is a Q& % <p> such that & ¢l QCV. Since &, is 4 regular
with respect to J there isa W & % such that g cl WCB. Now p € Q so that
Fcd Q=%cl.Q, and pEe.9 cl W so that & cl W=9% cl W. Thus QUW
€ % <p> and S cl QUW)HICVUB. Thus (X, %, %) is pairwise regular at p.

(iv) G=completely regular. First suppose that 4 is % closed and p &£ A. Let
X—-A=VUB where V&€ % <p> and B€E Z . Now &, is F completely regular
with respect to .7 so there is a B, €%, and a function f: X—[0,1] such that
f(B;)=0, f(X—B)=1land fis % u.s.c and % l.s.c. Since (X, F],7,) is pair-
wise completely regular there is a function g : X—[0,1]) such that g(»)=0, g(X
—V)=1and gis % wu.s.c. and £ l.s.c. We define 2 : X—[0,1) by k(2)=f(2)-
g(z), for z& X. Clearly, % is &, u.s.c. and 5 l.s.c. at any point z distinct
from p, h(»)=0 and 2(A)=1. Since k(p)=0and 2(X)CI[0,1], & is % l.s.c. at p.
Now for each € such that 0<e<1 since f is % u.s.c. there is a W& & <p>
with f(W)C[0,&). Then f(WUB;)CI[0,¢e). Hence k(WUB,)C[0,e) and WUB,
€Y, so that ks S u.s.c. at p.
- Now suppose that x is a point of X distinct from p, that A is % closed and
xEA. Let U=X—A so that U,€%<x>. Sincex is nota 5 adherent point
of Z;thereisaV, €. <x> such that V ,NB=¢ for some B& %, Let W=U,
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NV,. Since (X, 9], %) is pairwise completely regular there is a function " ! X
— [0, 1] such that f/(x)=1, f/(X—W)=0 and f’ is 4 u.s.c. and & Ls.c. Now
Z . is F completely regular with respect to .7 so thereisa B’ & %, and a fun-
ction g’ : X—[0,1] such that g’(B’)=0, g’(X—B)=1and g’ is 4 u.s.c. and J
l.s.c. We define 2:X—[0,1] by A(z2)=f'(2)-g'(z) for z&€ X. Then k(x)=1
and 2(X—W)=0 so that 2(4)=0. We now prove that 2 is % u.s.c. and % L

s.c. If z is any point distinct from p, two cases arise. If £(z)=0, then A(X)
C[0,1] so that £ is % l.s.c. at z. For any 7>0, since 2is % u.s.c. there is
a V,e9 .,<z> such that 2(V,)CI0, ). Furthermore, we choose V, so that

p&EV, Then V,eF<z>, and kis S u.s.c. atz. If 2(2)#0, let 7 be such
that 0<7 <k(z). Let r, and r, be such that f(2) & (7, 1], g'(z) & (7, 1] and
7, 7o=7. Now g’(p)=0, otherwisep& 7 clB’. Since f' is & l.s.c. there is
a Ve <z> such that f/(V,)C(r;,1]. Since g’ is J Ls.c. there is aV,
.7 <z> such that g’(V,)C(7,, 1]. Then R[VNV C(, 1], 2zEV;NV, and
pEVNV, so that VsNV, € % <z> and kis 5 Ls.c. atz. Similarly we can

show that 2 is % u.s.c. at zz Now k(p)=0, so it is clear that 2 is % l.s.c.
at p. For each >0 since g’ is % u.s.c. thereis a H& % <p> such that

g’ (H)C[0,7). Then g/(HUB’)C[0,7), so that Z(HUB’)C[0,r) and hence % is .
u.s.C. at p.

(b) implies (a). Suppose that (X,.%, %) is pairwise G and that . C.9 for
:=1,2. Let p be any point of X. Consider the . open filterbase & <p>. Cer-
tainly pisa % adherent point of % <p>, and it is unique since (X, %, %) is
pairwise G. We now show that S <p> is J G with respect to % . Consider
the case G=Urysohn. (For the other three properties, the proof follows similar
lines, and hence is omitted.) Take any point x€& .9 ad (& <p>), so x#p.
Since (X, .%], %) is pairwise Urysohn thereisa U & % <p> and a V& .7 <z2>
CZ <x> such that % cl UNSicl V=¢. But F cl UCH cl U and F I
VC % cl V, so that . cl UNYS cl V=¢, and hence % <p> is 4 Urysohn
with respect to Z . Thus (b) implies that ¥ <p> is % convergent to 2.
Hence & <p>DOF <p>, so that F<p>=F <p>, for each point p in X,
and 7=1,2. Thus & =9 for i=1,2, and (X, 97, % ) is minimal pairwise G.

Using similar arguments we can obtain filterbase characterizations of minimal

first countable bitopological spaces. A filterbase on X is countable if the filter
it generates is a countable collection of subsets of X. |
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THEOREM 5. Let (X, 97, % ) be a patrwise Hausdorff bitopological space.Then

the following are equivalent.
(a) (X, 97, %, ) is minimal pairwise Hausdorff first countable.

(b) Every countable 9. open filterbase on X with a unique & adherent point
D, 18 & convergent to p, where 7,7, =1, 2, i7#].

THEOREM 6. If (X,9], %) is pairwise G first countable the following are

equivalent.

(@) (X, 97, F) is minimal pairwise G first countable.
(b) Every countable T, open filterbase on X whichis 9~ G with respect to 9
and which has ¢ unique J. adherent point p, is I convergent to p, where 7,7 =1,

2, 7).
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