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ON A TENSOR FIELD f OF TYPE (1,1) SATISFYING
FAfT =0, (k>>2r)

By S.C. Rastogi and V.C. Gupta

1. ki f =0 structures

Consider M" to be an #-dimensional differentiable manifold of class C° and let
there be given a tensor field /0 of type (1,1) and of class C" satisfying

(1.1) P =0, (B>20),
such that

(2 rank f — rank ) =dim M".
Let us define the operators / and m by

(1.2) [ S F T m I p 4t
I denoting the identity operator, then we have:

THEOREM 1.1. For a tensor field f#0, satisfying (1.1), the operators I, m
defined by (1.2) and applied to the tangent space at a point of the manifold are
complementary projection oberators.

PROOF. We have

2=($fk_r)2= 2k._2f:fk_ fk—212(¢fr)fk-—-2r = k—r=z’

and similarly we can show that m2=m, Im=ml=0 and [/+m=1. Thus the theo-

rem 1S proved.
Let L and M be the complementary distributions corresponding to the projection

operators / and m respectively and let the rank of f be equal to p (a constant),
then dim L=(2p—#n) and dim M=2n—2p), (n<2p<2n).

A structure with the above properties is called an f(&, +7)-structure of rank p
and the manifold M" with this structure is called an f(%, +7)-manifold.

THEOREM 1.2. For a tensor field f satisfying (1.1) and the operators [, m
defined by (1.2), [ acts on f' as an identity operator and m acts on both f " and
f(k_f) /% as a null operator. Also f(k_') /% acts on L either as an almost complex

Structure operator or as an almost product structure operator, according as
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we take f(k,r) or (b, —7) structure.

PROOF. It can be easily proved that f I=f", f m=0, f(k_r)/ 2m=0,
f(k—?')

THEOREM 1.8. If F= f(k_r)/ 2, then F(k, xr)-structure of maximal rank is an
almost complex structure (almost product structure), respectively.

[=7TF/, which is the contention of our theorem.

PROOF. If the rank of F is maximal p=#n, therefore dim L=z and dim M =0.
Thus =0, which implies theorem 1. 3.

THEOREM 1.4. If F=f(k"’) / 2.. then F (k, + 7)-structure of minimal rank s
an almost tangent structure.

PROOF. If the rank of F is minimal, 2p=#, therefore dim L=0 and
dim M=#», Thus /=0, which shows that / (#=7)=0. Hence the theorem is proved.

THEOREM 1.5. For a tensor field f satisfying f (&, r)-structure (m— f(k—f)/ 2 )
(m-+ f(k_") / 2) =1 and satisfying f(k, —r)-structure ({—f (k=7)/ 2) (J+f (k—=1)/ 2) =(,

PROOF. We can prove this theorem by simple calculation.

THEOREM 11. 6. If in M" there is given a tensor field f#0, f (k=1) #I of class
C™ satisfying f(k, —r)-structure, then M admits an almost product structure n=
(k—7)
2f —1.

PROOF. Since 1;=2f(k_f) —1I, therefore we can easily prove that 7;2=I , which
proves the theorem.

THEOREM 1.7. Let p and q be tensors defined by

(m—fk_f), g def (m—|—fk_r),

b
Lhen

1) for an f(k, 7)-structure we have
p=q"=1, pa=qp, p° +q =p+q, pl=1, pl=I, pm=m, p'm=m, ql=-I, ¢*I=l,

qgm=m, q2m=m, pgl=—1[, bgm=m.

11) for an f(k, —r)-structure we have

2 2 | 3 _ '
p=q"=q, pg=p, P°tq =p+q, pl=—f* ", 1=, pm=m, pm=m, ql=I, g4
=/, gm=m, q2m=m.

PROOF. These results can be proved by simple calculation.
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2. Metrie for f(k, =r)-struetures

THEOREM 2.1. If in an n-dimensional manifold M”, there is given a tensor
freld f770 of rank p and satisfies above structures, then there exist complementiary
distributions L of dimension (2p—n) and M of dimension (2n—2p) and a positive

definite Riemannian melric g with respect to which L and M are orthogonal such that
f(k—r)/i.’ def b

!
k. h: g, tm, =g, where

Also we have

1) For f(k, 7)-structure h;;= —h;; and the rank p of f is even,
ii) For f(k, —7r)-structure hi;=h;., and the rank p of f is odd.

PROOF. Let ff , i

P mf be the local components of the tensors f,/, m respec:

tively. Let u}; (a,b,c,-+=1,2, -, 2p—n) be 2p—n mutually orthogonal unit vectors

in L and uj; (A,B,C,--=2p—~n+1, ---,n) be 2n—2p mutually orthogonal unit vectors
in M, then we have

h 1 h h ;i
R N

Since we know that f(k_r)/ 2m=0,. therefore we find

(2.2) ki- u; =0,

o A
Let (v‘:, vf) be the matrix inverse of (ug, u’;), then vf and v, are both com-
ponents of linearly independent covariant vectors which satisfy

(2.3)a - o u, = 0%, oF uh=0,
(2.3)b vf u; =0, vf ugzﬁg,
a h A &k
(2.3)c v, u,+v; uA=5J£.
Using (2.3) in (Q.1) we easily obtain
(2.4) lf v: =vf, Z? vf-—-O,
k h A A

which yields
(2.5)a) h

b) I} =0 u,
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h A h
c) m; =v; Uy,
Now following Yano [2] we have a globally defined positive definite Riemannian

metric with respect to which (z.f,:, zzg) form an orthogonal frame such that

W=a. u. vo= i
i % Bor V5 TG Uy
where

__a _a A A

. . I
By Putting Zﬁ.—-lj. ppp M=, Q.

(2.7) Zﬁ-l-mﬁ:-aﬁ

Also we can easily verify the following relations:

we easily get

! 4s _ ! s _ { s _

By Putting

1 ¢ ;5
(2. 8) 8= (aﬁ—kkj R, am—l-mﬁ),

we have a globally defined positive definite Riemannian metric which satisfies

. A : ¢
(2.9) V=85 Uy Myy=M; &4
From (2.9) we can see that the distributions L and M which are orthogonal
with respect to a. are still orthogonal with respect to g;; and uz, which are

mutually orthogonal unit vectors with respect to a.; are also mutually orthogonal

with respect to £ Thus it is easy to verify that the tensor g;; satisfies
!
(2' 10) k] kz gts"l_m]z:g]zl
which proves first part of the theorem.

i) Since for an f(%, r)-structure we have —Ki=T —m, therefore we can write

P B )
(2.11) —h; by +m; =0,

J

o

Now putting h,=h; g, Wwe get from (2.10) and (2.11) the following equations

{
(2.12) k; hytm =g
and
!

Substracting (2.13) from (2.12), we get
(2. 14) h; Chy+h,;)=0.
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Since k;. # 0, equation (2.14) shows that %; is a skew-symmetric tensor of rank

p and p must be even.
ii) For f(&, —»)-structure we have W=I —m, which similarly implies
t

showing that %, is symmetric tensor of rank p and p must be odd.

3. Some properties of f(k, r)-structure

THEOREM 3.1. If L is integrable, thern the subspace v =constant for a f(k,7)-

structure admits an almost complex structure.

PROOF. If Ei are local coordinates in the original manifold then the distribu-

tion L is defined locally by
B.1) m;dE'=0  or vi d€'=0.
The integrability condition of (3.1) can be given by
(3.2) [ 13 (0,m; ~0.m,)=0,
where 5t=5/3§°t,

Let the distribution L be integrable then denoting by vA(E)=constant, the eq-
uations of integral manifolds we can choose vf in such a way that

(3.3) vi=d. v,

¢ (4

If »° are the parameters and the parametric equations of one of the integral
manifolds are EJ' =$k(776), then we have

(3.4) B! =0,
h , ok b
where B, =d,/¢" (8,=08/0n).
Thus we can choose uﬁ in such a way that the matrix inverse to (Bf, uﬁl) IS (Bf,

vf) such that we have

5.5 B B <ot B =0
9 By=0, v} uy=0yg 'i
and
(3.6) l:f =Bf BZ , mf =?);-4 ui.
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If we put

3.7) 'y =By By I,
we can easily verify that

3.8) by b, ==0,

which proves theorem 3. 1.
Let V]- and ’V_ be the covariant derivatives in the enveloping space and the sub-

space respectively, then the Nijenhuis tensor for the almost complex structure ’kj 1S
7 r / 4 4 7 4 F 4 ’ d F 4 d r
(3.9 N ="kl 'V, h —'h N, W =V, By =V, K, )k
Substituting (3.7) in (3.9) we get

e i .
(3. 10) Ncb“Bi‘ ‘B; sz Nﬁ'
where
b 44 b { p { /
(3.11) N;=h; NV b —h; V, b —(V b, =V B,

DEFINITION 3.1. When the distribution L is integrable and the almost complex
structure induced on the integral manifold is also integrable, we say that the
f(k, r)-structure 1is partially integrable.

THEOREM 3.2. A necessary and sufficient condition for an | (k,r)-structure
to be partially integrable is that the Nijenhuis tensor satisfies:

kR 19 __
Nﬂqu lz.-O.

PROOF. When f(%, »)-structure is partially integrable we have

 pl p@ arh
(3.12) B, B, B, N;;=0.
From (3.11) we have
I b kR 4!
(3.13) Nﬁmf =—h; k, (Vkm? —-V,mg),
which in case of the distribution L being integrable yields
i b
(3.14) Nﬁ m; = O.
If we contract equation (8.12) with B; Bg B’; we get
h D49 _
(3.15) N, 1l =0.

Conversely suppose that f(%, 7)-structure satisfies (3.15), then from (3.12) we
have

! z I\ 10 _
L (Vo kg =N by by =0,
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which is equivalent to
: i h
(3.16) ¥ I;(Vm, =V, )= 0.
Thus the distribution L is integrable and we can induce an almost complex str-

ucture ’kj on the integral manifold. For the Nijenhuis tensor of this almost com-
plex structure we have

L
(3. 17) N’ =0,

which proves the theorem.

THEOREM 3.3. A mecessary and sufficient condition for an n-dimensional
manifold M~ to admit a tensor field f# 0 of type (1,1) and of rank p such that
FAYTLF =0, (r odd) is that p be even and the group of tangent bundle of the

manifold be reduced to group S(2s=2tq)X0(n—2s).

PROOF. Let

t .t t 4t 1 t gt i
(3.18) Ug =l Uy U o=k Uy, UG =Ry U,

be 2s mutually orthogonal unit vectors in L then with respect to the orthogonal

frame (u;, utB) the tensors g;; and kﬁ have components

E 0 0 0 E. 0
5 (e
(3.19) g= 0 Es O |, h=f\ 2 ):-_ —-£. 0O O],
0 0 E,_, 0 0 0

where ES denotes the s$Xs unit matrix.

Let f be a structure (f, %) such that p=2s and k=2g-+7 then following Kim
[1] it is observed that frzcl;éul and s is divisible by ¢. Let s=tg. If we put f 72

4 . . g _ 2
=u, ., and f Ui os—pt— — g for 7=1,2, -, s then lmi.—f Ui=U; oy =U; and %' u,

- S 4 . —
== U 0p gy =T Wiogo g = T Uy

Thus we can write

0  E,_, O
(3. 20) f=l-E, 0 0
0 0 0

Now we take another adapted frame (ﬁf, R};) with respect to which the metric

’ R _h
tensor g;; and k; have the same components as (3.19) and put z, = rfu g Ag=

754", then following Yano [2], the orthogonal matrix
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S 0
F=(r,)= o 0 _,)
n—4ais

where
Py S Slq\
S = 321 N ) So,
\Sql Sz " Sqq/
and Sz-j. 1S a #X¢ matrix, takes the form
-
(3.21) F= ,
0 0,
where
/ S O S1g \

)
1

L . :
\\"512 —Si3 S11 /
Let S be the tangent group defined by S in (8.21), then the group of tangent

bundle of the manifold can be reduced to SX0(z—2s), then we can define a posi-

tive definite Riemannian metric g and tensors f and k=f? of type (1,1) and of

rank 2s as tensors having (3.19) and (3.20) as components with respect to adap-
ted frames. Then we have

0 E, O -E, 0 O

q
ff=(-g. 0o o} &= 0o -E; 0
0 0 O 0 0 O

and fzq“—l—f’:O, which proves theorem 3. 3.
REMARKS 1. Similar results can be established for the structure f(%, —7) also.

2. Integrability conditions and some other properties of these structures are being
studied in a subsequent paper.
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