CHARACTERIZATIONS OF NEARLY COMPACT SPACES

By Travis Thompson

1. Introduction

In this paper nearly compact spaces are characterized using a type of convergence for filterbases and nets. Additionally, Hausdorff nearly compact spaces are characterized using the technique of Prof. Kasahara [5]. A space is said to be nearly compact if and only if each regular-open cover admits a finite subcover [7, Theorem 2.1]. Throughout this paper, \overline{A} will denote the closure of A and A^0 will denote the interior.

2. Preliminaries

DEFINITION 1. A filterbase $\mathscr{F} = \{A_a\}$ is said to w-converge to a point $x \in X$ if and only if for every regular-open set V containing x there exists an $A_{a(x)} \subset \mathscr{F}$ such that $A_{a(x)} \subset V$.

DEFINITION 2. A filterbase $\mathscr{F} = \{A_a\}$ is said to w-accumulate to a point $x \in X$ if and only if for every regular-open set V containing x, $A_a \cap V \neq \phi$ for every $A_a \in \mathscr{F}$.

DEFINITION 3. A net $\{x_a\}$ is said to w-converge (accumulate) to a point $x \in X$ if and only if $\{x_a\}$ is eventually (frequently) in every regular-open set containg x.

It is apparent upon inspection that filterbases and nets are "equivalent" in the sense of w-convergence (accumulation). The theorems immediately following are easily proven and are stated without proof.

THEOREM 1. If a filterbase (net) w-converges to a point $x \in X$, then it w-accumulates to $x \in X$.

THEOREM 2. Let \mathcal{F}_1 and \mathcal{F}_2 be two filterbases in X with \mathcal{F}_2 subordinate to \mathcal{F}_1 . Then if \mathcal{F}_2 w-accumulates to a boint $x \in X$, \mathcal{F}_1 w-accumulates to $x \in X$.

THEOREM 3. A maximal filterbase \mathscr{F} w-accumulates to a point $x \in X$ if and only if \mathscr{F} w-converges to $x \in X$.

DEFINITION 4. A function $f: X \rightarrow Y$ is almost continuous if and only if the

inverse image of every regular-open set of Y is open in X. (An equivalent definition is obtained if one replaces regular-open and open with regular-closed and closed. See [8, Theorem 22].)

THEOREM 4. A function $f: X \to Y$ is almost continuous at $x \in X$ if and only if for every net $\{x_a\}$ in X such that $\{x_a\}$ converges to x in the usual sense, the net $\{f(x_a)\}$ w-converges to f(x).

3. Characterizations of arbitrary nearly compact spaces

Using the concept of w-convergence, the following characterizations are offered.

THEOREM 5. For a topological space, the following are equivalent:

- (1) X is nearly compact.
- (2) If $\{F_a\}$ is a family of regular-closed sets such that $\bigcap_{i=1}^n F_{a_i} = \phi$, then there exists a finite subfamily such that $\bigcap_{i=1}^n F_{a_i} = \phi$.
 - (3) Every filterbase has a w-accumulation point.
 - (4) Every maximal filterbase w-converges to some point $x \in X$.

PROOF. (1 \Rightarrow 4). Let $\mathscr{F} = \{A_a\}$ be a maximal filterbase such that \mathscr{F} does not w-converge to any point; hence, \mathscr{F} does not w-accumulate to any point. Then for every $x \in X$, there exists a regular open set G_x containing x and $A_{a(x)} \in \mathscr{F}$ such that $A_{a(x)} \cap G_x = \phi$. Therefore, $\{G_x\}$ covers X and by hypothesis, there exists a finite subcover $\{G_{x_i}\}$. Since \mathscr{F} is a filterbase, there exists $A_0 \subset \bigcap_{i=1}^n A_{a(x_i)}$, $A_0 \neq \phi$, $A_0 \in \mathscr{F}$. But

$$A_0 = A_0 \cap X = A_0 \cap (\bigcup_{i=1}^n G_{x_i}) = \bigcup_{i=1}^n (A_0 \cap G_{x_i}) \subset \bigcup_{i=1}^n (A_{a(x_i)} \cap G_{x_i}) = \emptyset,$$

contradicting the fact that $A_0 \neq \phi$. Therefore, \mathscr{F} must have a w-convergent point, and hence must converge by Theorem 3.

- $(4 \Rightarrow 3)$. Every filterbase is contained in a maximal filterbase.
- (3 \Rightarrow 2). Let $\{F_a\}$ be a family of regular closed sets such that $\bigcap F_a = \phi$. Suppose for each finite subfamily, $\bigcap_{i=1}^n F_{a_i} \neq \phi$. Then $\mathscr{F} = \{\text{all finite intersections of elements of } \{F_a\}\}$ forms a filterbase. By hypothesis, \mathscr{F} w-accumulates to some point $x_0 \in X$. Since $\bigcap F_a = \phi$, there exists an a(x) such that $x_0 \notin F_{a(x)}$. Therefore, $x_0 \in X F_{a(x)}$, a regular-open set. But since \mathscr{F} w-accumulates to x_0 and $F_{a(x)}$

 $\in \mathcal{F}$, we must have $F_{a(x)} \cap (X - F_{a(x)}) \neq \phi$, an impossibility. Therefore, there must be a finite subfamily satisfying the finite intersection property.

 $(2\Rightarrow 1)$. Let $\{V_a\}$ be a regular-open cover of X. Then $\bigcap (X-V_a)=\phi$. By assumption, there exists a finite subfamily such that $\bigcap_{i=1}^n (X-V_{a_i})=\phi$. Therefore, $X=\bigcup_{i=1}^n V_{a_i}$, and X is nearly compact.

THEOREM 6. For a topological space, the following are equivalent:

- (1) X is nearly compact.
- (2) Every net has a w-accumulation point.
- (3) Every ultra-net has a w-convergent point.

4. Characterizing Hausdorff nearly compact spaces

We now turn our attention to Hausdorff nearly compact spaces.

DEFINITION 5. The graph of a function $f:X\to Y$, denoted G(f), is said to be r-closed if and only if for every $(x,y)\in X\times Y$ such $f(x)\neq y$, there exists regular-open sets U and V containing x and y, respectively, such that $f(U)\cap V=\phi$.

THEOREM 7. Let $f: X \to Y$ be any function between any two topological spaces. If G(f) is r-closed, then $\{(x_a, f(x_a))\}$ w-converging to (x, y) in $X \times Y$ implies that f(x) = y.

PROOF. To the contrary, suppose $f(x) \neq y$. Then by hypothesis, there exists regular-open sets U and V containing x and y, respectively, such that $f(U) \cap V = \phi$. Since $\{(x_a, f(x_a))\}$ must eventually be in $U \times V$, we know that $\{x_a\}$ is eventually in U and $\{f(x_a)\}$ is eventually in V. But $\{f(x_a)\}$ must also eventually be in U, an impossibility since $f(U) \cap V = \phi$. Therefore, f(x) = y.

It is well known that a function $f: X \rightarrow Y$ with a closed graph and Y compact is necessarily continuous. Following is the analogue to this result.

THEOREM 8. Let $f: X \rightarrow Y$ be a function with an r-closed graph. If Y is nearly compact, then f is almost continuous.

PROOF. Let $K \subset Y$ be a regular-closed set. Let $x \in f^{-1}(K)$. Then there exists a net $\{x_a\} \subset f^{-1}(K)$ such that $\{x_a\}$ converges to x. Since $\{f(x_a)\} \subset K$, $\{f(x_a)\}$ w-accumulates to some point $y \in Y$ by near compactness (Theorem 6). Therefore, $\{(x_a, f(x_a))\}$ w-accumulates to the point $(x, y) \in X \times Y$. Since there exists a sub-

net of $\{(x_a, f(x_a))\}$ that w-converges to (x, y), we have by Theorem 7 that f(x)=y. If $y\notin K$, then $y\in Y-K$, a regular-open set. But $\{f(x_a)\}\subset K$, hence cannot be frequently in Y-K. Therefore, $y\in K$, $x\in f^{-1}(K)$, and f is almost continuous.

We now modify the technique of Prof. Kasahara in order to characterize Hausdorff nearly compact spaces. Let $\mathcal S$ denote the class of spaces containing the class of Hausdorff completely normal and fully normal spaces.

THEOREM 9. A Hausdorff space Y is nearly compact if and only if for every space $X \in \mathcal{S}$, each function $f: X \rightarrow Y$ with an r-closed graph is almost continuous.

PROOF. In view of Theorem 8, only necessity remains to be proven. Suppose Y is not nearly compact. Then by Theorem 6, there exists a net $\{y_a\}$ in Y with no w-accumulation point. Let D be the directed set associated with $\{y_a\}$ and form the set $X=D\cup \{\infty\}$, $\infty \not\in D$. Define $T_a=\cup \{b\in D \mid b\geq a\}$. We now topologize X by declaring the open sets to be any subset of D and sets of the form $T_a\cup \{\infty\}$; i.e., $\mathscr{F}(D)\cup \{T_a\cup \{\infty\}\}$. Let $y_0\in Y$ be an arbitrary point and define f as follows:

$$f(x)=y_a$$
, if $x=a \in D$
= y_0 , if $x=\infty$.

We proceed to show that f has an r-closed graph but is not almost continuous. Let $(x,y) \in X \times Y$ such that $f(x) \neq y$. First, suppose $x \neq \infty$. By the Hausdorff property, there exists a regular-open set V such that $y \in V$, $f(x) \notin V$. Then, since $\{x\}$ is a regular-open set, we have $f(\{x\}) \cap V = \phi$. Now assume $x = \infty$. Since the net $\{y_a\}$ does not w-accumulate to $y \in Y$, this implies the existence of a regular open set V containing y and not containing f(x) such that $\{y_a\}$ is eventually outside of V; i.e., there exists a $b \in D$ such that $T_b \cap V = \phi$. Since $T_b \cup \{\infty\}$ is a regular open set, we have $f(T_b \cup \{\infty\}) \cap V = \phi$. Hence, G(f) is r-closed. The identity map $i:D \to D \subset X$ is a net in X converging to ∞ in the usual sense. But it is now quite obvious that the image of this net, namely $\{y_a\}$, does not

But it is now quite obvious that the image of this net, namely $\{y_a\}$, does not w-converge to y_0 . Therefore, by Theorem 4, f is not almost continuous, and the theorem follows from contraposition.

The University of Arkansas Fayetteville, Arkansas 72701

REFERENCES

- [1] Bourbaki, N., General topology, Part I, Addison-Wesley Publishing Company, 1966.
- [2] Carnahan, D., On locally nearly-compact spaces, Boll. Un. Mat. Ital., (4), 6 (1972), pp. 147—153.
- [3] Dugundji, J., Topology, Allyn and Bacon, Boston 1966.
- [4] Herrington, L.L., Some properties preserved by the almost continuous function, Boll. Un. Mat. Ital., (4), 10 (1974), pp. 556-568.
- [5] Kashara, S., Characterizations of compactness and countable compactness, Proc. Japan Acad., Vol. 49, no. 7 (1973) pp. 523-524.
- [6] Long, P.E., & Carnahan, D.A., Comparing almost-continuous functions, Proc. Amer. Math. Soc., 38 (1973), pp. 413—418.
- [7] Singal, M.K., & Mathur, A., On nearly-compact spaces, Boll. Un. Mat. Ital. (4), 2 (1969), pp. 702-710.
- [8] Singal, M.K., & Singal, A.R., On almost-continuous mappings, Yokohama Math. J., 16 (1968), pp. 63-73.