NOTE ON HANKEL TRANSFORMS

By W.Y. Lee

Titchmarsh first defined the Hankel transform \mathfrak{D}_{μ} for $\mu \geq -\frac{1}{2}$ by

$$\Phi(y) = (\mathfrak{D}_{\mu}\varphi(x))(y) = \int_{0}^{\infty} \varphi(x)\sqrt{xy} J_{\mu}(xy) dx$$
 (1)

where $J_{\mu}(x)$ is the Bessel function of the first kind and proved the following inversion formula ([7:pp.240-242]):

THEOREM 1. If $\varphi \in L^1(0,\infty)$ is of bounded variation in a neighborhood of the point x, then for $\mu \ge -\frac{1}{2}$

$$\frac{1}{2} \left\{ \varphi(x+0) + \varphi(x-0) \right\} = (\mathfrak{D}_{\mu}^{-1} \Phi(y))(x) = \int_{0}^{\infty} \Phi(y) \sqrt{xy} J_{\mu}(xy) dy \qquad (2)$$

It was extended to distributions by Zemanian as follows ([10-12]). Let H_{μ} be the space of smooth functions defined on $(0,\infty)$ satisfying the inequalities

$$\gamma_{p,q}^{\mu}(\varphi) = \sup_{0 < x < \infty} \left| x^{p} (x^{-1}D)^{q} (x^{-\mu-1/2}\varphi(x)) \right| < \infty, \ p,q = 0, 1, 2, \dots$$

equipped with the topology generated by the seminorms $\{\gamma_{p,q}^{\mu}\}_{p,q=0}^{\infty}$. Then the Hankel transform \mathfrak{S}_{μ} defined by (1) is an automorphism on H_{μ} . If the generalized Hankel transform \mathfrak{S}_{μ} is defined by

$$\langle \mathfrak{D}_{\mu}'f, \varphi \rangle = \langle f, \mathfrak{D}_{\mu}\varphi \rangle$$
 (3)

where f belongs to the dual space H_{μ}' and $\varphi \in H_{\mu}$, then \mathfrak{H}_{μ}' is an automorphism on the dual space H_{μ}' . Define the operator $N_{\mu} = x^{\mu+1/2} D_x x^{-(\mu+1/2)}$ with the inverse N_{μ}^{-1} given by

$$N_{\mu}^{-1}\varphi(x) = x^{\mu+1/2} \int_{-\infty}^{x} y^{-(\mu+1/2)} \varphi(y) dy$$

Let m be a positive integer greater than $-\mu-1/2$ for any given real number μ . Then the Hankel transform of arbitrary order $\mathfrak{H}_{\mu,m}$ is defined by

$$\Phi(y) = (\mathfrak{D}_{\mu, m} \varphi(x))(y) = (-1)^{m-m} \mathfrak{D}_{\mu+m} N_{\mu+m-1} ... N_{\mu} \varphi(x)$$
(4)

32 W. Y. Lee

with its inverse Hankel transform $\mathfrak{D}_{u,m}^{-1}$ given by

$$\varphi(x) = (\mathfrak{S}_{\mu, m}^{-1} \Phi(y))(x) = (-1)^m N_{\mu}^{-1} \cdots N_{\mu+m-1}^{-1} \mathfrak{S}_{\mu+m} y^m \Phi(y)$$

Replacing \mathfrak{H}_{μ} in the right hand side of (3) by $\mathfrak{H}_{\mu,m}$ we obtain [11:pp.764—765])

THEOREM 2. For any real number μ , the Hankel transform $\mathfrak{D}_{\mu,m}$ defined by (4) is an automorphism on H_{μ} , and hence the generalized Hankel transform \mathfrak{D}_{μ}' defined by (3) is an automorphism on the dual space H_{μ}' .

Motivated by Hirschman, Jr and Haimo's work on variation diminishing Hankel transforms ([2], [3]), Schwartz later on defined his Hankel transform \mathcal{H}_{μ} for $\mu \ge -\frac{1}{2}$ by ([6:p.713])

$$\Psi(y) = (\mathcal{H}_{\mu}\phi(x))(y) = \int_{0}^{\infty} \phi(x) \mathcal{J}_{\mu}(xy) \ dm(x)$$
 (5)

where $dm(x) = [2^{\mu}\Gamma(\mu+1)]^{-1}x^{2\mu+1} dx$ and $\mathcal{J}_{\mu}(x) = 2^{\mu}\Gamma(\mu+1)x^{-\mu}J_{\mu}(x)$. Let $L(0,\infty)$ be the space of $L^1(0,\infty)$ -integrable functions with respect to the Radon measure dm(x). He then proved the following inversion formula ([6:pp. 713-715]):

THEOREM 3. Let ϕ belong to $L(0, \infty)$ and let

$$\int_{0}^{1} \phi(x) x^{\mu+1/2} dx < \infty.$$

If ϕ is of bounded variation in a neighborhood of the point x, then

$$\frac{1}{2} \{ \phi(x+0) + \phi(x-0) \} = (\mathcal{H}_{\mu}^{-1} \Psi(y))(x) = \int_{0}^{\infty} \Psi(y) \mathcal{J}_{\mu}(xy) dm(y)$$
 (6)

In [5:p. 432] we raised the question on relations between the two Hankel transforms (1), (5) and their respective inversion formulas (2), (6). In this paper we prove that they are essentially the same. A straightforward computation reveals that (5) and (6) are reduced respectively to

$$\Psi(y) = (\mathcal{H}_{\mu}\phi(x))(y) = \int_{0}^{\infty} \phi(x)\sqrt{xy} (x/y)^{\mu+1/2} J_{\mu}(xy) dy$$
 (7)

$$\frac{1}{2} \{ \phi(x-0) + \phi(x+0) \} = (\mathcal{H}_{\mu}^{-1} \Psi(y))(x) = \int_{0}^{\infty} \Psi(y) \sqrt{xy} (y/x)^{\mu+1/2} J_{\mu}(xy) dy$$
 (8)

To give a refined form of Theorem 3, we need the following definition.

DEFINITION. For any real number $p \ge 0$, the space $E_p(\Omega)$ consists of L^1 -integrable functions defined on an open subset $\Omega \subset (0, \infty)$ with respect to the Radon measure x^p dx where dx is the Lebesgue measure.

From the definition we have $E_0(\Omega) = L^1(\Omega)$, $E_{2\mu+1}(\Omega) = L(\Omega)$ and in particular $x^{-(\mu+1/2)} \cdot E_{\mu+1/2}(0,\infty) = L^1(0,\infty)$. We shall call a function φ in $L^1(0,\infty)$ an $E_{\mu+1/2}$ -bounded variation if $x^{\mu+1/2}\varphi$ is of bounded variation in $L^1(0,\infty)$. Then Theorem 3 is refined as follows:

THEOREM 3'. Let $\phi \in E_{\mu+1/2}(0,\infty)$ be an $E_{\mu+1/2}$ -bounded variation in a neighborhood of the point x, then (7) and (8) are inverse to each other under the Hankel transform (5).

Now we prove the main thoerem. Hereafter μ is any real number $\geq -\frac{1}{2}$.

THEOREM 4. (a) Theorem 1 implies Theorem 3' under the mapping $\varphi \rightarrow (x/y)^{-(\mu+1/2)} \varphi$. In other words

$$(\mathfrak{D}_{\mu}\varphi(x))(y) = (\mathcal{H}_{\mu}(x/y)^{-(\mu+1/2)} \varphi(x))(y) \tag{9}$$

and

$$(\mathfrak{S}_{\mu}^{-1} \Phi(y))(x) = (\mathcal{H}_{\mu}^{-1} (y/x)^{-(\mu+1/2)} \Phi(y))(x) \tag{10}$$

(b) Theorem 3' implies Theorem 1 under the mapping $\phi \rightarrow (x/y)^{\mu+1/2} \phi$. In other words,

$$(\mathcal{H}_{\mu}\phi(x))(y) = \mathfrak{D}_{\mu}((x/y)^{\mu+1/2}\phi(x))(y)$$

and

$$(\mathcal{H}_{\mu}^{-1}\Psi(y))(x) = \mathfrak{D}_{\mu}((y/x)^{\mu+1/2}\Psi(y))(x)$$

PROOF. Since the proof of (a) and (b) are identical we prove (a) only. Let φ satisfy the assumptions of Theorem 1 and consider the mapping $\varphi \to (x/y)^{-(\mu+1/2)}\varphi$. Since

$$\|\varphi\|_{L^1} = y^{-(\mu+1/2)} \|(x/y)^{-(\mu+1/2)} \varphi\|_{E_{\mu+1/2}}$$

this mapping is injective from $L^1(0,\infty)$ into $E_{\mu+1/2}(0,\infty)$. Moreover φ is of bounded variation in $L^1(0,\infty)$ if and only if $(x/y)^{-(\mu+1/2)}\varphi$ is of $E_{\mu+1/2}$ -bounded variation in $E_{\mu+1/2}(0,\infty)$. Thus $(x/y)^{-(\mu+1/2)}\varphi$ satisfies the assumptions of Theorem 3'. This completes the proof.

34 W. Y. Lee

Since the mapping $\varphi \to (x/y)^{-(\mu+1/2)} \varphi$ is an isomorphism from H_{μ} onto $x^{\mu+1/2} H_{\mu}$, an application of \mathfrak{D}_{μ} and \mathfrak{D}_{μ}' on the space H_{μ} and on its dual space H_{μ}' respectively allows us to extend Theorem 4 to distributions. Thus we have

THEOREM 5. (a) For $\mu \ge -\frac{1}{2}$, the two Hankel transforms \mathfrak{H}_{μ} and \mathcal{H}_{μ} are equivalent on the spaces H_{μ} and $x^{\mu+1/2}H_{\mu}$ respectively, that is for all $\varphi \in H_{\mu}$

$$(\mathfrak{D}_{\mu}\varphi(x))(y) = \mathcal{H}_{\mu}((x/y)^{-(\mu+1/2)}\varphi(x))(y)$$

(b) For $\mu \ge -\frac{1}{2}$, the two generalized Hankel transforms \mathfrak{D}_{μ} and \mathcal{H}_{μ}' are equivalent on the dual spaces H_{μ}' and $(x^{\mu+1/2}H_{\mu})'$ respectively in a sense of (3), namely for each $f \in H_{\mu}'$ and for all $\varphi \in H_{\mu}$

$$\langle \mathfrak{D}_{\mu}'f, \varphi \rangle = \langle \mathcal{H}_{\mu}'(x/y)^{-(\mu+1/2)}f, \varphi \rangle$$

Theorem 5 answers our previous questions ([5:pp. 431-432]).

Rutgers University, Camden Campus Camden, New Jersey 08102

REFERENCES

- [1] L. D. Dube and J. N. Pandey, On the Hankel Transform of Distributions, to appear.
- [2] D. T. Haimo, Integral Equations Associated with Hankel Convolutions, Trans. A. M. S. 116, pp. 330-375, 1965.
- [3] I. I. Hirschman, Jr., Variation Diminishing Hankel Transforms, J. Analyse Math. 8, pp. 307-336, 1960-1961.
- [4] W. Y. Lee, On Spaces of Type H_{μ} and Their Hankel Transformations, SIAM J. Math. Anal. 5, pp. 336-348, 1974.
- [5] W. Y. Lee, On Schwartz's Hankel Transformation of certain Spaces of Distributions, Math. Anal. 6, pp. 427-432, 1975.
- [6] A. L. Schwartz, An Inversion Theorem for Hankel Transforms, Proc. A. M. S. 22, pp. 713-717, 1969.
- [7] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, 1937.
- [8] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.
- [9] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1966.

- [10] A.H. Zemanian, A Distributional Hankel Transformation, J. SIAM Appl. Math. 14, pp. 561-576, 1966.
- [11] A. H. Zemanian, Hankel Transforms of Arbitrary Order, Duke Math. J. 34, pp. 761-769, 1967.
- [12] A. H. Zemanian, Generalized Integral Transformations, Interscience Publishers, 1968.
- [13] A. H. Zemanian, Distribution Theory and Transform Analysis, McGraw-Hill, 1965.