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THE STRUCTURE OF IDEALS IN A EUCLIDEAN SEMIRING 

By Louis Dale and Dorothy 1. Hanson 

1. Introduction 

It is well known that a EucIidean ring is a generalization of the ring of 

ordinary integers and their properties. It is equally well koown that every ideal 
in a Euclidean ring is a pricipal ideal, i. e. a Euclidean ring is a principal ideal 

ring. The purpose of this paper is to generaIize the semiring of nonnegative 

integers, Z+ , and their properties by defining a Euclidean Semiring. Since Z+ 

is not a principal ideal semiring, it is not expected that a Euclidean semiring 
will be a principal ideal semiring. The structure of ideals in a Euclidean semiring 

E is closely related to the function ø associated with E. It will be shown 

that if B is a basis for an ideal in E , then ø restricted to B is bounded. Some 

interesting consequences can be derived from this fact. 

2. Fundarnentals 

There are different definitions of semiring appearing in the Iiterature. How. 
-ever, the following definition will be used throughout this paper: 

DEFINITION. A set S together with two binary operation called addition (+) 

and multiplication (.) will be called a semz.ηfng provided (S, +) is an abelian 

semigroup with a zero, (S,.) is a semigroup, and multipIication distributes over 
addition from the left and from the right. 

A semiring is said to be commutative if (S, .) is a commutative semigroup. A 
semiring S is said to have an identity if there exists 1 E S such that l'x=x.l=x 
for each x E S. 

DEFINITION. A subset T of a semiring S is called a sμbsemiring of S if T is 
also a semiring with respect to the binary operations defined in S. 

DEFINITION. A subset 1 of a semiring S wiIl be called an ideal in S if 1 is 
an additive subsemigroup of (S, +), ISC1 and SIζ1. 

Let S be a semiring with identity e. Then it is clear that the set {ne 내 ε Z+} is 
a subsemiring. With this in mind we give the following definition: 

DEFINITION. Let S be a commutative semiring with an identity e. The set 
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앙= {x ε 5 I there exists y ε 5 such that x=y+e} U {O} wiIl be caUed the 

þrincipal part of 5. 

It is to be noted here that the identitye may or may not belong to 5p' However, 

as indicated , the additive identity 0 ε 5p' 

THEOREM 1. 115 is a commutative semi서ng wz'th an identity e, then 5p z's a 

subsemiring 01 5. 

PROOF. Let x1, x2 ε 5p' Then there are elements y1' y2 ε 5p such that x1 =y1 

+ e and x2 = y2 + e and it foIIows that 

X1+X2=(Yl+e)+(y +e)=(Yl+Y2+e)+e ε5. 

AIso, 

X1X2=(Y1 +e)(Y2+e)= (YlY2+Yle+Y2e)+e ε 앙· 

Hence, 5p is a subsemiring of 5. 

DEFINITION. Let 5 be a commutative semiring with an identity. Then 5 will 

be called a principal semin'ng if 5=5p' 

The semiring Z+ is a principal semiring as wiIl be shown in the following ex­

amples. This important property is a generalization of a similar property of 

Euclidean rings. it is easy to see that aII Euclidean rings are principaI semirings. 

EXAMPLES. 
+ ition and 1 =0+ 1 ε Z; , assume that x~l ， x~O. Since x is a non-identity, by 

+ Peano’ s Postulates, there exists y ε Z -t- such that x=y+ 1. Hence, Z+ is a prin-

cipal semiring. 

(i쩨ij피i)Le않t Q+ = {x ε QI냐밤x상셀는>0아}. Su뼈1 

q ε Z""• a때ndp<q. If there e뼈x처iS짧t않s 퍼- ε Q+ such that 보{;=〕추ε+1=츠+s호-. then s싼 + r - - ----- q r 

r<r, which is a contradiction. Hence, for O<x<l , x 종 Q;. Now, suppose x는1. p 

2+ and x=(x-1)+1 εQJ. Hence, 때= 
is not a principal semiring. 

'-
(iii) Let a, b E R , b> a and 5= [a, b]. In 5, define x+y=max {x, y} and xy= 

min {x, y}. Clearly, under the two operations, addition and multiplication, 5 is 

closed, commutative and associative. AIso, for each x ε 5 , a+x=max {a, x} =x 

and xb= min {x, b} =x. So 5 has an additive identity a, and a multiplicative 

identity b. Hence 5 is a commutative semiring with an identity. Now let x~b ε S 
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and suppose there exist y ε S such that x==y+b. But x== y+b== max {y, b} ==b, which 

is a contradiction. Hence Sp == {b} U {a} == {b, a} , and S is not a principal semiring. 

The above examples indicate that. the principal part of a semiring may be 

trivial or non-trivial. For our purpose here we will be interested in the case 

where S==Sp' i. e. principal scmirings. 

Throughout this paper, unless otherwise stated, the semirings will be com­

mutative semirings with an identity. 

3. Euclidean semirings 

The problem of generalizing the nonnegative integers and their properties is 

an interesting one. In an ordinary Euclidean ring the function defined on the 

ring satisfies certain properties relating to the product of two elements and the 

division algorithm. No relationship is defined regarding the sum of two elements. 

To study ideals in a Euclidean semiring it is necessary to impose a condition on 

the function that relates to the sum of two elements. This condition will be 
-l-

derived from the fact that, in Z ‘ , we have la+bl == lal + Ibl 는 I a 1. By taking 

the usual definition of a Euclidean ring and adding this property. we define a 

Euclidean semiring as follows: 

DEFINITION. A Euclidean semiring. E. is a pη·%cφal seηzz"rz"ng. Iree 01 div-

isors 01 zero. with a function rjJ: E • Z+ satisfying the following properties: 

C i) for a ε E , rjJ Ca)==O if and only if a==O, 

(ii) for all a. b E E. if a+b ;;zfO then rjJCa+b)는rjJCa) ， 

(iii) for all a, b ε E , then rjJ Cab)== rjJ Ca) rjJ Cb). 

Civ) for all a, b;;zfO ε E , there exists Þ. r E E such that a==þb+r where γ==0 

or rjJCr)< rjJ(b). 

Recall that any two ihtegers a and b have a greatest common divisor d. for 

which there are integers s and t such that d==sa+tb. However. if a, b ε Z+ , then 

we have either sa==tb+d or tb==sa+d. We wish to extend this property to Eucl­

idean semirings. 

DEFINITION. Let E be a Euclidean semiring and a ,ÆO, b ε E. An element d 

ε E will be called the greatest common d z"visor of a and b if: 

(i) d is a common divisor of both a and b. 

(ii) If c is a common divisor of both a and b, then rjJ(c)드rjJ (d). 

It is well known and easy to prove that in a Euclidean ring, the greatest 

common divisor d of any two elements a and b can be written in the form d == 
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sa+tb, where s and t are elements in the ring. Consequently, for our EucIidean 

semirings, we w ilI assume that either sa=tb+d or tb=sa+d. The general form 

of the division algorithm is indispensable in the study of Euclidean rings. It wiIl 

be seen that this is true also for the study of Euclidean semirings. 

EXAMPLES. (i) The set of nonnegative integers, Z+ , is a Euclidean semi­

ring. To see this, let rþCn) =n for aII n E Z+. It is cIear that the four pcoperties 

of a EucIidean semiring are satisfied. 

Cii) The principal part of the set of nonnegative rational numbers Q; is a Eu­

clidean semiring. Let rþCO)=O and rþCq)=l for aII q~O. Properties (i)-Ciii) of a 

EucIidean semiring are cIearIy satisfied. If q, þ~o ε Q + , then it is weII -known 

that there is an r ε Q such that q=φ. Consequently, property Civ) foIIows. The 

is a EucIidean semi-

nng. 

4. Ideals in a EucIidean semiring 

Since Z+ is a EucIidean semiring, it is easy to see that a EucIidean semiring 

is not a principal ideal ring. However, the ideaIs in a Euclidean semiring can 

be characterized. Let E be a EucIidean semiring, a ε E and Ta= {x ε E!çbC찌르 

çbCa)} U {O}. 

THEOREM 2. II E Z"S a Ecμclz"dean r z"ng and a E E , then Ta is an ideal in E. 

PROOF. Let x, yETa and kEE such that k~O. Then rþCx)>çbCa) and rþ(y)> 

rþCa). Consequently, rþCx+y)늘rþCx)늘rþCa) and rþCkx)=rþCk)rþCx)>rþCx)르rþCa) ， there­

fore x+y ε T a' kx E T a and it foIIows that T a is an ideal in E. 

Since çbCa)=O if and onlyif a=Oand rþCe)=l, it is cIearthat To=T1=E. Some 

of the properties of ideals of the form T a are given in the foIIowing theorem. 

THEOREM 3. Let E be a Euclidean seη상72-，zg aχd a, b E E. Then 

Ci) TaζTò zf and only zf çbCa)는rþCb) ， 

(ii) TaUTò=Tc ’ 
w!zereçbCc)=min{rþCa), rþCb)}. 

(iii) TanTò=Tc" where rþCc')=max{rþCa), rþCb)}, 

(iv) Jf {깐} z.s a seqμence 01 elements in E sμch that rþCa씨 <￠(ai + 1), the% n Ta, = 0. 

PROOF. Ci) If TaCTò' then from the definition of Tò it foIIows that rþCa)늘rþCb). 

Conversely, if rþCa)는rþCb) it is cIear tnat T aCTò. 

(i Ì) and (iii) Since a, b E E , it folIows that rþCa)는rþCb) or rþCb)는rþCa). Conseq-
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uently, TaCTb or TbCTa and (ii) and (iii) follow. 

Civ) Suppose x ε Tat and #(x)=%· Since {￠(aJ} is an increasing sequence of 

positive integers, there is an aj such that rþCaj)>n=rþCx). Consequently, x종 nT a, 
and it follows that n T a, = rþ. ~ 

Let T a be an ideal in E and Ba= {x E Talx=a+y where rþCy)<rþCa)}. For a, 
b ε E , let S[a, b)= {x ε ElrþCa)드rþCx)<rþCb)}. We wish to show that Ba=S[a, 2a). 

First, to show that rþCBa) is bounded, let x=a+y E Ba' Then rþCy) <rþCa) and by 

the division algorithm, a=qy+r where r=O or rþCr) <rþCy). Since E is a principal 
o 0 semlnng, q=ψ+e for some ψ ε E. Consequently, 

rþC2a) =rþCa+a) =rþCa+qy+r) 

=rþCa+Cq' +e)y+r) 
=rþCa+y+q'y+r)는rþCa+y)=rþCx). 

Therefore rþCBa) is bounded by rþC2a) and it follows that Ba CS[a, 2a). Now 

suppose that zεS [a, 2a). Then rþCa)드rþCz) <rþC2a). The division aIgorithm gives 

z=þa+r where r=O or rþCr) <rþCa). If þ~e， then there is a þ' such that þ=þ' 

+e. Consequently, z=þa十r=φ'+e)a+r=Þ'a+a+r. If þ' =e, then rþCz) =rþCa十a+
y)늘rþCa+a)=rþC2a) ， a contradiction. If φ’~e， then κ=þ" +e for some þ" E E. 
Consequently, z=ψ'a+a+r=Þ" a+a+a+r and rþ(z) =rþCP" a+a十a+r)늘rþCa+a) = 

rþC2a), a contradiction. Therefore Þ=e and z=a+r ε Ba' Thus S [a, 2a)ζBa and 

it follows that Ba=S [a, 2a). 

THEOREM 4. S [a, 2ι) is a basis for Ta• 

PROOF. Let Z E Ta• Then Z=qa+r where r=O or rþCr) <rþCa). If r=O or q=e 

the proof is complete. Suppose r낯o and q :;z!:e. Since E is a principal semiring, 
.q =ψ+e for some q’ E E. Then z=qa+r=q'a+Ca+r) , where a+r ε S [a, 2a), and 

it follows that S [a, 2a) is a basis for Ta• 

Now if A is an ideal in E and S [a, 2a)ζA for some a ε A it is clear that T a 

ζA. We want to find some other conditions which will guarantee that TaζA 

for some a ε A. These conditions are given in the following three lemmas. 

LEMMA 5. Let A be an ideal in a Euclidean semzOring E. If a εA and S [ma, 
(m+e)α1 CA for some m ε A, then T maCA. 

‘!r 

PROOF. Suppose xES[ma, 2ma)-S[ma, Cm+e)a]. Then rþCma+a)<rþCx)< 

φC2ma). Applying the division algorithm gives x=ÞCm+e)a+r where r=O or ØCr) 

<rþCma+a). Now r=sa+t where t=O or rþCt) <rþCa). Since E is a principal semi-
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ring, there is an element q ε E such that þ= q+e. All of this gives 

x=Þ(m+e)a+r 

=(q+e)(ma+a)+(sa+t) 

=q(ma+a)+(ma+a)+(sa+ t) 

=q(ma+a)+(sa+a)+(ma+t) 

=q(ma+a) + (s+e)a+(ma+t). 

Now q(ma+a) ε A , (s+e)a ε A , and ma+t ε A since ø(t) <Ø(ma). Consequently, 
x E A and it follows that S [ma, 2ma) C A. An application of theorem 4 assures 

that T maCA. 

LEMMA 6. Let A be aχ z"deal z"n a Euclz"dean semz"r z"ng E. lf there exz"sts a E A 

sμch that a+e ε A , then Ta,CA. 

PROOF. Suppose a, a+e E A and x ε S(a2, a2+a). Then x=a2+z where #(z>

<Ø(a). Now a=þq+r where r=O or Ø(r)<Ø(z). Since E is a princpal semiring, 

þ=q+e for some q ε E. Thus, 

Consequently, S[a2, 

x=a2+z 

= (pz+r)a+z 

=þza+ra+z 

=z(pa+e)+ra 

=z [(q+e)a+e] +ra 

=z[qa+(a+e)] +ra ε A. 

a2+a)CA and it follows from Lemma 5 that Ta,CA. 

LEMMA 7. Let A be an z"deal z'n a EucUdean semz"껴ngE.lfa， b ε A and a 

and b are relaUve Þ서ηze， then there exz"st cEA sκch that TcCA. 

PROOF. If a and b are relative prime, then their greatest common divisor is 

e. Hence there exist s, t ε E such that either sa=tb+e or tb=sa+e. Suppose sa 

=tb十 e. Now tb ε A , and tb+e=sa ε A. Consequently, lemma 6 assures that T tú 

ζA. Similarly, if tb=sa+e it follows that TsaζA. ln either case, there exist c 

such that TcCA. 

If Ø(a)~Ø(b) it is easy to see that ø(1깅 and Ø(Tb) can differ by only a finite 
number of nonnegative integers. Consequently, if A is an ideal containing T a' 

then E그A:JTa and it fo l1ows that Ø(E) and Ø(A) can differ by only finitely many 

mtegers. 

THEOREM 8. Let A be an ideal in a EμcUdean semiring E such that TaCA for 
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some a ε A. Then there exists x E A such that T" is maximal z'n A and A=KUT .. 
where K= {y E A!O<ØCy) <ØCx)}. 

PROOF. Let 5= 뼈(μ) I TuCA}. It is clear that S is a non-empty subset of Z+ 

and by the Well-Ordering Principle, 5 contains a least element, say ØCx). Now 

ØCx)드ØCu) for all ØCu) ε5 and it follows from theorem 3 that T" is maximal in 

A. If K= {y ε A!O<ØCy)<øCx)} then it follows that A=KUT". It is clear that 

any basis for A is contained in KU5 [x, 2x). 

Not every ideal A in E contains an ideal of the form T a' For example, if 

a ε A such that ØCa)>l , then the principal ideal (a) contains no ideal of the 

form T" for any x. This is clear since Ca) = {ax! x ε E} and ØCax)=ØCa)ØCx). 

Thus, Ø{Ca)} consists only of multiples of ØCa). In this case, Ca)=aTe• We want 

to generalize this case by considering ideals of the form bT a' It is easy to show 

that if T _ is an ideal in E and b ε E , then bT _ is an ideal in E. AIso it follows 
’ a 

from theorem 3 that bTaCbTc if and only if ØCa)는ØCb). Our aim now is to show 

that if A is an ideal in E such that A contains no ideal of the form T a' then 

A contains an ideal of the form bT _' To do this we wiII need to derive some a 

properties of ideals of this type. 

THEOREM 9. b5 [a , 2a) is a basis lor bTa• 

PROOF. Since 5 [a, 2a) is a basis for Ta, it follows that b5 [a, 2a) is a basis 
for bT a 

Now it is clear that for any b ε A the ideal Cb)=bTeCA. We are interested in 

ideals of the form bTa where a:;i:e and conditions which wiII insure that an ideal 

A wiII contain bTa• 

Since 5[a, 2a)=Ba={y!y=a+r where ØCr)<ØCa) }, it follows that d5[a, 2a)= 

{y!y=da+r where ØCr)<ØCda) and d divides r}. 
Consequently, the proof of the following lemma foIIows directly from the proof of 

lemma 5. 

LEMMA 10. Let A be an ideal in E. 11 a E A and d5 [ma, Cm+e)aJ CA, then 

dT maCA. 

This lemma is necessary for the foIIowing theorem. 

THEOREM 11. Let A be an ideal in E and a E A. If d divz'des a and a+d E A, 
then dTaCA. 
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PROOF. Let a=dm and x ε dS[a, a十dl. Then dS [a, a+dl =dS [dm, (m+e)dl 

and it follows that x=d
2
m+z where rþ(z) <rþ(dm) and d divides z. Hence z=kd 

for some k ε E. Now d=pz+rwhere rþ(r)<rþ(z) and since E is a principal semi­

ring, we have both d=/+e and p=q+e. All of this gives 

x=d2%+z 

=dηz(pz+r)+z 

= (apz+z)+ar 

=k(apd+d)十ar

=k[a(q十e) (f+e)+dl +ar 

=k [a(q/+q+/) + (a+d)l +ar. 

Since a ε A and a+d ε A , it follows that x E A. Consequently, dS [a, a+dl CA 

and it foIlows from Lemma 10 that dT aCA. 

COROLLARY 12. Let A be an ideal in E and a, b ε A. 1/ d is the greatest 

common divisor 0/ a and b, then dTpζA /or some p ε A. 

PROOF. Since d is the greatest common divisor of a and d it follows that 

either sa=tb+d or tb=sa+d for some s, t ε A. Suppose sa=tb+d. Then tb ε A 
and it foIlows from theorem 11 that dTtbCA. Similarly, if tb=sa+d, then dTsa 
ζ:A. 

LEMMA 13. Let p,q,c, d ε E. (i) 1/ P dz"νz"d es q, t hen dT qCdT p. 

(ii) 1/ c diνz"des d , then dT.CcT~. p--- p 

PROOF. (i) If p divides q, then q=Pk for some k E E. If x ε dTq, then x=dq' 

for some ψ ε E with rþCq')>tþ(q). But rþ(q')늘tþ(q) =rþ(pk)는rþ(P). Consequently, 
.x E dTp and dTqCdTp• (ii) If c divides d , then d=cm for some m E E. Cnnsequent­

ly, dT，， =cηzT，， =c(mT~)CcT^. p ..,. ....... p ... , .... - P'" _ .... - P 

Now suppose that A is an ideal in E such that A contains no ideals of the form 
T a for a ε A. Let a, b E A and d be the greatest common divisor of a and b. It is 

clear that d~e. Otherwise, lemma 7 would assure that TcCA for some c ε A , a 

contradiction. Consequently, it follows from coroIlary 12 that dTpCA for some 

p ε A. Now let W= {dld is the greatest common divisor of some a, b ε A} and 

k E W such that tþ(k) is minimum. Let V = {P I dT p CA} and q ε V such that 

tþ(q) is minimum. It is clear that k divides d for all d E W. By applying lemma 

13 and theorem 3 we obtain that kTq is maximal in A. Now letting L= {t ε AI 

φ(t) <rþ(kq)} we obtain A=LUkTq where LnkTq= {O}. Now kS [q, 2q) is a basis 

/ 
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for kT
q

• Consequently, LUkS(q, 2q) is a basis for A and it foIlows that this basis 

is bounded by rþ(2kq). These remarks and theorem 8 prove the following structure 

theorem for ideals in a EucIidean semiring. 

THEOREM 14. Let A be an z"deal z"n a Euclz"dean semz'rz'ng E. Then A=LU 

dTp' 때ere dTp z"s maxz"mal 찌 A , L= {t ε Ajrþ(t) <rþ(dp)} and LndTp= {이 . More­

over , LUdS [p, 2p) z"s a basis for A μIhose z"mages are bounded by rþ(2dp). 

An immediate consequence of this structure theorem is that if E is a EucI idean 
-1 semiring with the property that rþ-'(n) is finite or empty for each χ EZ+ , then 

every ideal in E has a finite basis. This is clear since the basis LUdS [p, 장) 

would be a finite set. The set of integers Z+ is such a semiring. It can be con­

cluded from this structure theorem that every ideal A in Z+ is “ almost princi pal" , 
i. e. A is a principal ideal except for a finite number of elements. To see this, 

note that in Z+ , dTp is a principal ideal if P= 1. Consequently, if P>l, then 
dT p is a principal ideal with only a finìte number of elements missing and it is 

obvious that L is a subset of the missing elements. If rþ is one to one and onto 

Z+ , then it can be shown quite easiIy that E is a Noetherian semiring. This 

is done by showing first that ideals of the form dT a, satisfy the ascending chain 

condition and extending this to any ascending chain of ideals in E. 

The structure of ideals in a Euclidean semiring gìves us only a gIimpse into 

the structure of the semiring itseIf. Since every Euclidean semiring is an ideal 

in itself it follows that the set of images of the basis for the semiring is bounded. 

This seems to be the only general concIusion that is apparent concerning the 

semiring. WhiIe we have developed a decomposition theorem for ideals in a Eu­

clidean semiring, this in no way gives us a decomposition theorem for the semi­

ring itself. 
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