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THE STRUCTURE OF IDEALS IN A EUCLIDEAN SEMIRING

By Louis Dale and Dorothy L. Hanson

1. Introduction

It is well known that a Euclidean ring is a generalization of the ring of
ordinary integers and their properties. It is equally well known that every ideal
in a FEuclidean ring is a pricipal ideal, i.e. a Euclidean ring is a principal ideal
ring. The purpose of this paper i1s to generalize the semiring of nonnegative

integers, Z*, and their properties by defining a Euclidean Semiring. Since Z B
is not a principal ideal semiring, it is not expected that a Euclidean semiring
will be a principal ideal semiring. The structure of ideals in a Euclidean semiring
E is closely related to the function ¢ associated with E. It will be shown
that if B is a basis for an ideal in E, then ¢ restricted to B is bounded. Some

interesting consequences can be derived from this fact.

2. Fundamentals

There are different definitions of semiring appearing in the literature. How-
ever, the following definition will be used throughout this paper:

DEFINITION. A set S together with two binary operation called addition ()
and multiplication (-) will be called a semiring provided (S, +) is an abelian
semigroup with a zero, (S, +) is a semigroup, and multiplication distributes over
addition from the left and from the right.

A semiring is said to be commutative if (S, ) is a commutative semigroup. A
semiring S is said to have an identity if there exists 1 €S such that 1-x=x-1=x
for each x & S.

DEFINITION. A subset T of a semiring S is called a subsemiring of S if T is
also a semiring with respect to the binary operations defined in S.

DEFINITION. A subset I of a semiring S will be called an 7dee/ in S if [ is
an additive subsemigroup of (S, +), ISCI and SICI.

Let S be a semiring with identity e. Then it is clear that the set {ne|ln E Z T1 s
a subsemiring. With this in mind we give the following definition:

DEFINITION, Let S be a commutative semiring with an identity e. The set
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S e~ {x &S| there exists y& S such that x=y+e¢}J{0} will be called the
principal part of S.
It is to be noted here that the identity ¢ may or may not belong to S 5 However,

as Indicated, the additive identity 0 & Sp.

THEOREM 1. If S is a commutative semiring with an identity e, then Sp 1S a

subsemiring of S.

PROOF. Let x;, x,&S,. Then there are elements y;, y, &S5, such that x, =y,
+eand x,=y,+e and it follows that

2+ %=+ + (3. +2)=(,+y,+e)+e ES.
Also,

Hence, S, is a subsemiring of S.

p
DEFINITION. Let S§ be a commutative semiring with an identity. Then S will
be called ¢ principal semiring if S=S 5
The semiring Z Tisa principal semiring as will be shown in the following ex-

amples. This important property is a generalization of a similar property of
Euclidean rings. it is easy to see that all Euclidean rings are principal semirings.

EXAMPLES. (1) Z" is a principal semiring. Let x € Z ™. Since 0 & Z;' by defin-
ition and 1=0+1& 27 : , assume that x71, x70. Since x is a non-identity, by
Peano’s Postulates, there exists y&E Z T such that z= y+1. Hence, Z T isa prin-
cipal semiring.

(ii) Let Q" ={r €Q|¥>0}. Suppose r EQ* and 0<x<1. Then z= i;-— where p,

7+

D ?_s , then s+

q & Z~ and p<g. If there exists -—;"’:-— = Q+ such that —q-=_;_+1=

r<r, which i1s a contradiction. Hence, for 0<x<1, x%Q;. Now, suppose x=>1.
Then (x—l)EQ+ and x=(x—1)+1€Q:. Hence, Q;={xEle21}, and Q+

is not a principal semiring. o

(iii) Let @, b& R, b> e and S=|[qg,b]. In S, define x+y=max {x, y} and xy=
min {x,y}. Clearly, under the two operations, addition and multiplication, S is
closed, commutative and associative. Also, for each x &S, ¢+x=max {a, x} =2
and rb=min {x,b}=x. So S has an additive identity @, and a multiplicative

identity . Hence S is a commutative semiring with an identity. Now let x#6 & S
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and suppose there exist y & S such that x=y+-b. But x=y-+b=max{y, b} =5, which
1s a contradiction. Hence Sp={b} Ulae}=1{b,a}, and S is not a principal semiring.
The above examples indicate that the principal part of a semiring may be
trivial or non-trivial. For our purpose here we will be interested in the case
where S =Sp, l.e. principal semirings.
Throughout this paper, unless otherwise stated, the semirings will be com-
mutative semirings with an identity.

3. Euelidean semirings

The problem of generalizing the nonnegative integers and their properties is
an interesting one. In an ordinary FEuclidean ring the function defined on the
ring satisfies certain properties relating to the product of two elements and the
division algorithm. No relationship is defined regarding the sum of two elements.
To study ideals in a Euclidean semiring it is necessary to impose a condition on
the function that relates to the sum of two elements. This condition will be
derived from the fact that, in Z+, we have |e+b|=l|a|+|b|=]a|. By taking
the usual definition of a Euclidean ring and adding this property, we define a
Euclidean semiring as follows:

DEFINITION. A EFEuclidean semiring, E, is a principal semiring, free of div-
isors of zero, with a function ¢: E—Z " satisfying the following properties:

(i) fore€ E, ¢(e)=0 if and only if =0,

(ii) for all @, bE E, if a+b#0 then ¢(a+b)=¢(a),

(iii) for all ¢, b € FE, then ¢(ab)=0(a)p(b),

(iv) for all e, 8#0 & E, there exists p, r € £ such that e=pb+r where =0
or ¢(r)<ao(b).

Recall that any two integers ¢ and b have a greatest common divisor d, for

which there are integers s and ¢ such that d =se+:b. However, if ¢, bE Z " then
we have either sa=¢b+d or th=sa+d. We wish to extend this property to Eucl-

idean semirings.

DEFINITION. Let E be a Euclidean semiring and ¢#0, & E. An element d

&€ E will be called the greatest common divisor of ¢ and b if:
(1) d is a common divisor of both ¢ and 5.
(ii) If ¢ is a common divisor of both ¢ and 4, then @#(c)<<¢(d).

It is well known and easy to prove that in a Euclidean ring, the greatest
common divisor 4 of any two elements ¢ and & can be written in the form d=
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sa+th, where s and ¢ are elements in the ring. Consequently, for our Euclidean
semirings, we will assume that either se=tb+d or tb=sa+d. The general form
of the division algorithm is indispensable in the study of Euclidean rings. It will
be seen that this is true also for the study of Euclidean semirings.

EXAMPLES. (i) The set of nonnegative integers, Z*, is a Euclidean semi-

ring. To see this, let p(n)=niforalln & Z T, It is clear that the four properties
of a Euclidean semiring are satisfied.

(ii) The principal part of the set of nonnegative rational numbers Q. is a Eu-

2
clidean semiring. Let ¢(0)=0 and ¢(g)=1 for all ¢g5#0. Properties (i)-(iii) of a

Euclidean semiring are clearly satisfied. If ¢, p770 EQ+, then it is well-known
that there is an € Q such that g=7p. Consequently, property (iv) follows. The

principal part of the set of nonnegative real numbers R: is a Euclidean semi-
ring.

4, Ideals in a Euclidean semiring

Since Z* is a Euclidean semiring, it is easy to see that a Euclidean semiring
is not a principal ideal ring. However, the ideals in a Euclidean semiring can
be characterized. Let E be a Euclidean semiring, ¢ &€ £ and Ta= [xrEeEE|0(x)=

¢(a)} U {0}.
THEOREM 2. If E is a Ecuclidean ring and a S E, then T, is an ideal in E.

PROOF. Let x, y& T, and 2 € E such that £5£0. Then ¢(x)>¢(e) and ¢(y)=

¢(a). Consequently, ¢(x+y)=¢(x)=¢(e) and ¢p(kx)=¢(k)p(x)=>p(x)=¢(a), there-
fore x+y&T, kx&T , and it follows that T , 1s an 1ideal in E.

Since ¢(e)=0 if and only if ¢=0and ¢(e)=1, it is clear that T,=T,=F. Some
of the properties of ideals of the form T, are given in the following theorem.

THEOREM 3. Let E be a Euclidean semiring and a, bE E. Then
(1) T,CT, if and only if ¢p(a)=¢(b),

(i) T,UT,=T,, where p(c)=min{p(a), ¢(b)}.

(i) T ,NT,=T,, where ¢(c’)=max{p(a), (b},

(iv) If {“7:} 18 @ sequence of elements in E such that ¢5(a£) <¢a(az. +1), then mTa'_zo.

PROOF. (1) If T CT,, then from the definition of T, it follows that ¢(a)=¢(d).
Conversely, if ¢(a)=¢(b) it is clear wat T CT,,
(i1) and (iii) Since ¢, b & E, it follows that ¢(e)=¢(s) or ¢(b)=¢(a). Conseq-
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uently, T ,CT, or T,CT', and (ii) and (ii1) follow.

(iv) Suppose x &T, and ¢(x)=#n. Since {p(eg;)} is an increasing sequence of
positive integers, there is an a; such that @(a;) >n=¢(x). Consequently, » & ”Ta,
and it follows that N7, =¢. “

Let T, be an ideal in E and B,={x &7 |x=a+y where ¢(y)<p(a)}. For a,
bEE, letSla,b)={x € E|¢(a)<¢p(x)<p(d)}. We wish to show that B =S[a, 2a).
First, to show that ¢(B,) is bounded, let x=e¢+y & B,. Then ¢(y)<¢g(e) and by
the division algorithm, e=gy+#7 where =0 or ¢(r) <¢(y). Since E is a principal
semiring, g=q’+4¢ for some q¢" € E. Consequently,

?Qa)=p(a+a)=d(a+qy+7)

=@(a+(g" +e)y+r)

=g(a+y+q’y+7r)=p(a+y)=p(x).
Therefore ¢(B,) is bounded by ¢(2¢) and it follows that B, CSa, 22). Now
suppose that z&S[e, 2¢). Then ¢(a)<¢(z)<¢p(2z). The division algorithm gives
z=pa+r where r=0 or ¢(r)<¢(a). If p#e, then there is a p’ such that p=p’
+e. Consequently, z=pa+r=0@"+e)a+r=p'at+a+r. If p’=e, then ¢(z)=¢d(e+a
r)=p(a+a)=¢(2a), a contradiction. If p’#e, then p'=p”+e for some p” & E.
Consequently, z=p'a+a+r=p"a+a+ta+r and ¢(2)=¢p(Pp"a+a+a+7r)=d(a+a)=
¢(2a), a contradiction. Therefore p=e and z=ae+7 &€ B,. Thus S[e, 2¢)CB, and
it follows that B, =S {a, 2a).

THEOREM 4. Sla, 2a) is a basis for T,.

PROOF. Let Z&T,. Then Z=ga+7r where »=0 or ¢(r) <¢(a). If =0 or g=e
the proof is complete. Suppose »#0 and g3%e. Since E is a principal semiring,
g=q +e for some g’ € E. Then z=qga+r=q’a+(a+7), where e+ € Sla, 2z), and
it follows that S{e, 2a¢) is a basis for T,.

Now if A is an ideal in £ and Sle, 2¢)CA for some e & A it is clear that T,
CA. We want to find some other conditions which will guarantee that T CA

for some ¢ & A. These conditions are given in the following three lemmas.

LEMMA 5. Let A be ar ideal in a Euclidean semiving E. If a &A and S ([ma,
(m+e)a]l CA for some me A, then T, CA.

o

PROOF. Suppose x & S(ma, 2ma)—S[ma, (m+e)a]. Then od(mat+a)<d(x)<
$(2ma). Applying the division algorithm gives x=p(m+e)a+r where =0 or ¢(»)
<d(ma-+a). Now r=sa+t where =0 or ¢(?)<¢(e). Since E is a principal semi-
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ring, there is an element ¢ € £ such that p=¢g+e. All of this gives
x=p(m-te)atr
=(g+e)(ma+a)+(sa+it)
=qg(ma+a)+(ma+a)+(sa+t)
=qg(ma+a)+(sa+a)-+ (ma+it)
=qg(ma+a)+(s+e)at+(ma+1).
Now g(ma+a) €E A, (ste)a& A, and ma+t € A since ¢(2) <¢(ma). Consequently,

x € A and it follows that S(me, 2ma) C A. An application of theorem 4 assures
that T, CA.

LEMMA 6. Let A be an ideal tn a Euclidean semiring E. If there exists a & A
such that at+e & A, then T ,CA.

PROOF. Suppose ¢, a+e& A and xES(az, cz2+a). Then z=a"+z where o(z)
<@(a). Now a=pg+r where »=0 or ¢(r) <¢d(z). Since E is a princpal semiring,
p=qg+e for some g E E. Thus,

x:cz2+z
=(pz+7)a-+z
=pzat+rat+z
=z(pa+e)+ra
=z[(g+e)a+el +ra
=z(ga+(a+e)] +7ra & A.

Consequently, S[az, czz—l—cz)CA and it follows from Lemma 5 that T 2 A

LEMMA 7. Let A be an ideal in a FEuclidean semiring E. If a,6E A and a
and b are relative prime, then there exist cEA such that T CA.

PROOF. If @ and b are relative prime, then their greatest common divisor is
¢. Hence there exist s, £ & E such that either se=¢b+e or tb=sa-+e. Suppose sa
—=tb+e. Now th& A, and fb+e=sa € A. Consequently, lemma 6 assures that T,

CA. Similarly, if tb=se+e it follows that T CA. In either case, there exist ¢
such that T _CA.

If p(a)7#9(b) it is easy to see that ¢(7T,) and ¢(T,) can differ by only a finite
number of nonnegative integers. Consequently, if A is an ideal containing T,

then £DADT , and it follows that ¢(£) and @(A) can differ by only finitely many
integers.

THEOREM 8. Let A be an ideal in a Euclidean semirving E such that T CA for
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some a & A. Then there exists x © A such that T, is maximal in A and A=KUT
where K={y € A|0<g(y) <d(x)}.

PROOF. Let S={¢w)|T CA}. It is clear that S is a non-empty subset of Z7

and by the Well-Ordering Principle, S contains a least element, say &(x). Now
P(x)<p(x) for all p(x) &S and it follows from theorem 3 that T_ is maximal in

A. If K={yc A[0<p(»)<o(x)} then it follows that A=KUT,. Itis clear that
any basis for A is contained in KUS [x, 2x).

Not every ideal A in £ contains an ideal of the form T ,» For example, if
a & A such that ¢(e)>1, then the principal ideal (@) contains no ideal of the
form 7', for any x. This is clear since (@)={aex|x € E} and ¢(ax)=0¢(@)p(x).
Thus, ¢{(a)} consists only of multiples of ¢(2). In this case, (@)=aT . We want
to generalize this case by considering ideals of the form bT . It is easy to show
that if T, is an ideal in £ and 6 € E, then 4T is an ideal in E. Also it follows
from theorem 3 that 6T ,CbT, if and only if ¢p(@)=¢(b). Our aim now is to show
that if 4 is an ideal in £ such that A contains no ideal of the form T, then
A contains an ideal of the form 07T, To do this we will need to derive some
properties of ideals of this type.

THEOREM 9. &Sla, 22) is a basis for T,

PROOF. Since S[a, 22) is a basis for T, it follows that 6S[a, 2a) is a basis
for 4T .

Now it is clear that for any & € A the ideal (b)=0T,CA. We are interested in
ideals of the form #T, where e7e and conditions which will insure that an ideal
A will contain T .

Since Sla, 2a)=B_,={yly=a+7r where ¢(r)<¢(@)}, it follows that dS|a, 2a)=

{yly=da+r where ¢(r)<¢d(da) and d divides r}.
Consequently, the proof of the following lemma follows directly from the proof of
lemma 5.

LEMMA 10. Let A be an ideal in E. Ifa € A and dS [ma, (m+e)al CA, then
ar, CA.

This lemma 1s necessary for the following theorem.

THEOREM 11. Let Abe an ideal in E and a&S A. If d divides ¢ and a+d < A,
then dT CA.
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PROOF. Letae=dm and x &€dS|a, a+d). Then dS [a, a+d] =dS [dm, (m+e)d]
and it follows that *=d“m-z where #(z2)<d(dm) and d divides z. Hence z=kd
for some 2&€ E. Now d=pz+7r where ¢(r)<¢(z) and since £ is a principal semi-
ring, we have both d=f-+e¢ and p=g+e. All of this gives

r=d°m+z

=dm(pz—+7r)+z

=(apz+z)+ar

=k(apd+d)+ar

=kle(g+e)(f+e)+d]l +ar

=kla(qgftq+f)+(a+d)] +ar.
Since e€ A4 and e+d € A4, it follows that x € A. Consequently, dS(ae, e+d]CA
and it follows from Lemma 10 that 47T CA.

COROLLARY 12. Let A be an ideal in E and a, b&E A. If d is the greatest
common divisor of a and b, then dTpCA for some p & A.

PROOF. Since d is the greatest common divisor of ¢ and d it follows that

either sa=tb+d or tb=sa+td for some s, t € A. Suppose sa=ib+d. Then b € A
and it follows from theorem 11 that dT,,CA. Similarly, if tb=se+d, then dT,

CA.

LEMMA 13. Let p,q,c, d €EE. (1) Ifp divides q, then quCdTP.
(ii) If ¢ divides d, then dTpCch.

PROOF. (@) If pdivides g, then g=pk for some Z2€ E. If xEqu, then x=dg’

for some ¢’ € E with ¢(g")=>¢(q). But ¢(¢")=0(q)=d(Pk)=¢(p). Consequently,
x&edT 5 and dT CdT . (1i) If ¢ divides d, then d=cm for some m & E. Consequent-

ly, dTp=cmTp=c(mTp)Cch.
Now suppose that A is an i1deal in £ such that A contains no ideals of the form
T, for ac A. Let ¢, & A and d be the greatest common divisor of ¢ and 0. It is

L

clear that dz%e. Otherwise, lemma 7 would assure that T CAforsomeces A, a
contradiction. Consequently, it follows from corollary 12 that dTpCA for some

peE A, Now let W={d|d is the greatest common divisor of some ¢, 8 & 4} and
k & W such that ¢(k) 1s minimum. Let V={pIdTpCA} and g&V such that
¢(g) is minimum. It is clear that % divides d for all d € W. By applying lemma
13 and theorem 3 we obtain that kT, is maximal in 4. Now letting L={t & A]

$(2) <¢p(kg)} we obtain A=LUKT , where LNAT ={0}. Now £kS|q, 2¢) is a basis
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for KT . Consequently, LUZAS(q, 29) is a basis for A and it follows that this basis

is bounded by ¢(2kg). These remarks and theorem 8 prove the following structure
theorem for ideals in a Euclidean semiring.

THEOREM 14. Let A be an ideal in a Euclidearn semiring E. Then A=LU
dTp, where dTp is maximal in A, L={t € A|d()<p(dp)} and LﬂdTp= {0}, More-
over, LUdS[p, 2b) is a basis for A whose images are bounded by p(2dp).

An immediate consequence of this structure theorem is that if £ is a Euclidean
semiring with the property that QS_I(n) is finite or empty foreachz € Z ™ then
every ideal in £ has a finite basis. This is clear since the basis LUdSI[p, 2p)
would be a finite set. The set of integers Z™ is such a semiring. It can be con-
cluded from this structure theorem that every ideal 4 in Z ™ is “almost principal”,
i.e. A is a principal ideal except for a finite number of elements. To see this,
note that in Z*, dT , 18 a principal ideal if p=1. Consequently, if p>>1, then
dT, 1s a principal ideal with only a finite number of elements missing and it is
obvious that L is a subset of the missing elements. If ¢ is one to one and onto

Z™, then it can be shown quite easily that E is a Noetherian semiring. This
is done by showing first that ideals of the form dT, satisfy the ascending chain
condition and extending this to any ascending chain of ideals in £.

The structure of ideals in a Fuclidean semiring gives us only a glimpse into
the structure of the semiring itself. Since every Euclidean semiring is an ideal
in itself it follows that the set of images of the basis for the semiring is bounded.
This seems to be the only general conclusion that is apparent concerning the
semiring. While we have developed a decomposition theorem for ideals in a Eu-

clidean semiring, this in no way gives us a decomposition theorem for the semi-
ring 1tself.
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