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TOPOLOGIES ON GENERALIZED SEMI-INNER PRODUCT
ALGEBRAS, LATTICES, AND SPACES

By T. Husain* and S. M. Khaleelulla

1. Introduection

In his paper (2], Lumer has introduced the concept of semi-inner product
space. This concept has led Husain and Malviyva [1] to introduce and study,

what they call, semi-inner product algebras. In a different direction Nath [4]
has used Lumer’s concept to introduce, what he calls, generalized semi-inner

product spaces, and has studied strong topologies on such spaces. These strong
topologies have earlier been studied on generalized inner product spaces by
Prugovecki [6].

In this paper we introduce, what we call, generalized semi-inner product (in
short g.s.1.p.) algebras, and lattices, and show that a g.s.i.p. algebra (lattice)
with strong topology is locally convex algebra (lattice). We also show that a g.
s.i. p. algebra with strong topology under a restriction is locally m-convex alge-
bra. Finally, we show that it is possible to introduce, as in [6], weak topologies
in g.s.i.p. spaces, and it turns out that a g.s.i.p. space with weak tfopology
is a Hausdorff locally convex space.

Throughout in this paper, we have used N to denote the set of natural num-
bers.

2, g.s.i.p. algebras

G. Lumer [2] calls a complex (real) vector space X a semi-inner product
space (abbreviated to s.i.p. space) if to every pair of of elements x, y & X there
corresponds a complex (real) number, written as [x,y], with the following
properties:

(1 [x+y, 2] =[x, 2] + [, 2],

| [Ax, y] =A[x, 9], x,9, 2&X, A:complex (real),
(ii) [x, 2] >0 for x#0, and
(i) | (%, 9] 1 %< [x, 11 [3, 5],

REMARK 2.1. With |x|= [z, x] t/ 2, a s.i.p. space becomes a normed space.

*This research was supported by an N.R.C. Grant
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It is clear from (i) and (ii) that [x, y] =0 for all y&X iff x=0, Moreover, if
either of x,y is zero, then [x,y] =".

DEFINITION 2.2. A vector space A is called a s.z.p. algebra if (2a) A is a
normed algebra,and (b) A is a s.i.p. space with the same norm as that of the
normed algebra A,

REMARK 2.3. Our definition of a s.i.p. algebra is different from that given
in [1].

DEFINITON 2.4. A vector space A is called ¢ generalized semi-inner product

algebra (abbreviated to g.s.i.p. algebra) if

(1) A is an algebra,

(ii) there is a subspace M of A which is a s.i.p. algebra, and

(111) there is a set { of linear multiplicative operators on A satisfying (a)
{ACM, i.e. each member of { maps A into M, and (b) Tx=0 for all T&L,
implies x=0.
We denote such a g.s.i.p. algebra by the triple (4,Z, M).

EXAMPLE 2.5. Let A be the space of all measurable functions on a compact
topological group G with Haar measure. A4 is a vector space if

(f+g)(x)=f(x)+f(»)
and (Af)(x)=Af(x), f, g€EA, A scalar.

Clearly A is an algebra. Now, consider the vector subspace M=If(G),2<p< oo,
of A; then M is a s.1.p. algebra if

(fg)(x)= f - fCxy~Hg()dy

and

£, 81=— “p [ F®)g)1P~! sgn (g(x) dx,
g

where
lel,=( [, 1e@? dx) "

and sgn is the signum function. Let  be the family of operators E? -1 (S) defined
by
(E?H(S)(af+B2)) (@) =xg(x)(IFO P72 +1g(®) 1P~ 5) (af () +Bg(x)),

where ¥ is the characteristic function of S and S is a subset of A whose Haar

measure is non-zero. Clearly each E? _l(S) 1s linear. It can easily be verified that
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(ACM and Tx=0 for all TEL implies x=0. Since

As=Xskg>
it follows that each E? ! (S) is multiplicative. Thus, (A4, {, M) is a g.s.1.D.
algebra. But it is not a s.i. p. algebra.

3. Strong topology

Let (4, {, M) be a g.s.i.p. algebra. We introduce “strong topology” in A as
follows:

DEFINITION 3.1. For each x & A4, define
V(z; Ty, -, T; ©=E4; [T(r—x), T(y-01""<e, 1<i<n}

for all >0, Ty, -, T &{and #nEN. The family {V(x; Ty, -, T, €): Ty, -,
THEC, e>0, n=N} forms a neighbourhood basis at x, for each x&A4, for a topo-
logy on A which we call “strong topology”.

REMARK 3.2. It is known, from [4], that (i) each V(0; T, ---, T ; &) is
circled and convex, and that (ii) the topology on A for which the sets V(x; T
e) are neighbourhoods of x for all e>0, T&{ is Hausdorff.

Michael [3] calls a subset of an algebra m-convex (multiplicatively convex
if V' 1s convex and idempotent (i.e. VVCV ).

LEMMA 3.3. Let (4, {, M)bea g.s.i.p. algebra. Then each V(0; Ty, ---, T ;

g), 0<eL1, s m-convex.

PROOF. Clearly V (0; T, -, T ; &) is convex by 3.2. We show that it is
idempotent i.e. V(0; Ty, ---, T,; &V (0; T,, -, T, e) CV(Q; Ty, T,; ¢€)
(0<e<1). Let x, y&V(0; T4,---, T,; €). Then,

(T (xy), T,(x3)] Y 2=[Tk(x)Tk(y), T,a(x)Tk(y)]l/ , 1<k<n

<[T,(0, TV 2T,(), T <e<e.
This implies that xy&€V(0; T,, -+, T ; &) for allx, y&V(0; T}, -, T,; &), 0<¢

<1, and this establishes the idempotentness of V(0; Ty, ---, T,; €), 0<e<L.

Hence it is m-convex.

2

A locally convex algebra is an algebra and a Hausdorff locally convex space
such that the multiplication is continuous in each variable separately ([3], page 3).

A locally convex algebra is called locally m-convex algebra if there exists a
neighbourhood basis of 0 consisting of m-convex sets ([3], page 6).
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THEOREM 3.4. A g.s.i.p. algebra (A, {, M) equipped with the strong topology,
as defined tn 3.1, is a locally convex algebra.

PROOF. In view of ([4], 3.3), (4, {, M) is a Hausdorff locally convex space.
To complete the proof we show that for any V(xyr; Ty, -, T, ; e), there exists

V(.’I-'; Tl’ " Tn Z) Z_—l-ngl%én(lk)

A= [T (%), Tk(xo)]l/z, k=1, -, n, such that

xoV(x: Ty o Ty =5 )CV s Ty, -, Ty €.

n

€

‘Let yEV(x; r, -, T,.: T): then

T (=2, T,(r-0)"< 5, k=1, 2, =, n
Now,
[T (%Y —%g%), T (%Y — xox) = [T, xg(y—2%), T x,(y—x)]
= [T (2 )T, (y—2), T, (x)T (y—x)]
<IT (%), Ty(x)] [T, (y—%), T (y—01"*
<2-%=e.

1172

1/2

This implies that %, y&V(xgx; T, -, T,; &), for all y&V(x; Ty, -, T /),
and this proves that
x )V (x; Ty, -,
Similarly, we can show that
Viz; T, -, T; e/)x,CV(xxy; Ty, -, T,; ).
This shows that (A4, {, M) is a locally convex algebra under the strong topo-

logy.

e/L)CV (xg%; Ty, -, T,; €.

n’ n

COROLLARY 3.5. A g.s.i.p. algebra (A L, M) equipped with the strong topo-
logy for which the family {V{(x: T, -, T ; E); r, -, T &L, 0< <1, nEN}

forms a neighbourhood basis of x, for each xEA, 1s a locally m-convex algebra.

PROOF. The result follows from 3.3 and 3.4 if 4, as defined in 3.4, is greater
than or equal to 1. If A<1 then the result follows from 3.3, because we can

show that for any V(xyx; Ty, ---, T,; &), there exists V(x; Ty, *+, T,; &) such

that
xoV(x; Ty, «~, T,; CV(xgx; Ty, =, T,; &)

THEOREM 3.6. A g.s.i.p. algebra (A, {, M) with strong (opology ts metrizable
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tf there is a countable subset C of { which has the proderty that for any TEL there
is a P&EN, where N is the linear manifold generated by C, such that [Tx, Tx] /2
<[Px, Px1"* for all xEA.

PROOF. Same as that of ([4], 3.4).

4. g.s.1.p. lattices
In this section, we consider only the 7rea/ vector spaces.

DEFINITION 4.1. An ordered vector space X is called @ semi-inner product lat-
tice (in short s.i.p. lattice) if (a) X is a normed lattice, and (b) X is a s.i. p.
space with the same norm as that of the normed lattice X.

A subset B of a vector lattice X is solid if [x|<|y|, y&B implies x&B, where
|x]| =sup {—=x, x}. A vector subspace M of X is a lattice ideal if M is a solid
subset of X. Every lattice ideal M in a vector lattice X is a sublattice of X
([5], page 35). Every solid set is circled.

A linear map from a vector lattice into a vector lattice is called a lattice
homomorphism if it preserves lattice operations. (For more details, see [5]).

DEFINITION 4.2. An ordered vector space X is called @ generalized semi-inner
product (in short g.s.i.p.) lattice if

(i) X is a vector lattice,

(i1) there is a lattice ideal M of X which is a s.1. p. lattice, and

(iii) there is a set T of lattice homomorphisms on X such that (a) TXCM, i.e.
each member of T maps X into M, and (b) kx=0 for all A&T implies x=0.

We denote such a g.s.i.p. lattice by the triple (X, 7, M). The example given
in [4] is in fact a g.s.1.p. lattice.

As In section 2, we define
Vix; kl, oee kn; e)={yEX; [h,(y—x), kz.(y—x)]l/‘?(e, 1<i<n}, for all €>0, £,
e, B ET and #&N.

LEMMA 4.3. Each V(0; hy, -, h; g) ¢s solid.

PROOF. Let |x|<|y| and y&V(0; A;, -, k; e). Then (*) [hz.(y), kz.(y)] 1/2<£,
1<<¢<w. Since each £, is a lattice homomorphism, |x|<|y| implies that |£.(x)]|<

1 7:(»)1. But then, since M is a normed lattice, we have
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i.e. [7,(x), ROV < TR, (D)2 <e, by ().
This implies that x&V (O; hy, -+, R, €), and hence each V(0; Ry, > h,; €) 1S
solid.

An ordered locally convex space which is a vector lattice is called a locally

convex lattice if there is a neighbourhood basis of 0 consisting of solid sets ([5],
page 103). )

THEOREM 4.4. A g.s.i.p. lattice (X, T, M) equipped wih the strong topology
,fgr which the family {V(x; hy, -, h,, €): €>0, Ry ==, B ET, neEN} forms a
ne: ghbourhood basts at x, for each x&X, is a locally convex lattice.

PROOF. In view of ([4], 3.3), (X, 7, M) is a Hausdorff locally convex space;
hence 1t 1s an ordered locally convex space, because X is an ordered vector space
{[5], page 63). The result now follows from 4. 3.

The sets of the form

V(x; hyy Ry o e)=kglV(x; h,; ), hE&T, >0,

constitute a neighbourhood basis at x, for each ¥&X, for a topology on X called
ultra-strong topology.

Clearly ultra-strong topology is finer than the strong topology, and hence Ha-
usdorff.

REMARK 4.5. Since the intersection of solid sets is solid, it follows that each
V(0; &y, Ry -+ g) is solid. Also it is convex.

THEOREM 4.6. A g.s.i.p. lattice (X, T, M) equitped with ultra-strong topology
s a locally convex lattice.

PROOF. (z, 7, M) is a Hausdorff locally convex space [4], and hence ordered
locally convex space. The result now follows from 4.5.

5. Weak topology

A vector space X is a g.s.i.p. space if

(i) there is a subspace M of X which is a s.i.p. space,

(ii) there is a (non-empty) set { of linear operations on X satisfying (a) (X
CM, 1.e. each element of { maps X into M, and (b) Tx=0 for all T&E{ implies
x=0 [4].

LEMMA 5.1, Let (X, ¢, M) bea g.s.i.p. space and x&X. If [Tx, x] =0 for
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all yeM, TEL, then x=0.

PROOF. In view of (ii) (b), we have Tx=0 for all T&¢. But then, by 2.4,
it follows that x=0.

LEMMA 5.2. Let (X, ¢, M) be a g.s.i.p. space and xGX. If [Tx, Tx] =0
for all T&€f, then x=0.

PROOF. First we observe that Tx=0; because if Tx0, then by the definition
of semi-inner product Space, it follows that [Tx, Tx] >0 which contradicts the
hypothesis. Since Tx=0 for all T&f, it folows from (ii)(b) that x=0.

DUAL SPACE 5.3. Let (X, {, M) be a g.s.1.p. space. For each T'&{ and each

yeM, we define.
F(x: T, y)=I[Tx, y] on X.
Clearly F is linear functional on X, Let L, be the family of all such func-
tionals; it is not a vector space, in general. Denote by L the vector space (over

the same field as that of X) spanned by L.

PROPOSITION 5.4. L and X constitute a dual pair.
PROOF. If F(x)=0 irr all F&L, then [Tx, y] =0 for all y&eM and all T&L.

But then, in view of 5.1, x=0.
Conversely if for a given F,&L we have that F,(x)=0 for all x&X; then, by

definition, F, is the zero element of L.

NOTATION 5.5. <z, F>=F(x), az&X, F&Ll. Clearly <x, F> is a bilinear
function on X and L.

PROPOSITION 5.6. Each FEL is continuous on X in the strong topology.

PROOF. Let £>0.
| F(x; T, p)—F(xg; T, y)|=1(Tx, y] —[Txp ]
= {T(x—xy), ]|
<[T(x—1xp), T(x—11"*[y, 31"*<e

whenever
[y, ¥]
because [y, y1>0 for y#0, i.e. for all xEV(xO; T, [ € ]172 ) Thus each elem-
y, ¥

ent of L 1s a continuous linear functional on E equipped with strong topology.
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Hence the continuity of an arbitrary element of I follows.

REMARK 5.7. The above proposition says that L is contained in-the vector spa-
ce conjugate to X with strong topology.

DEFINITION 5.8. The coarsest topology on X for which all the linear func-

tionals from L are continuous is called {ke weak fopology.

The family of all subsets of X of the form,
Ux ; Fy, -, FR={yEX: |F.(y—2)[<], 1<i<n}

for all F,, -, F €L, n&N, is a neighbourhood basis at .
Since L, generates L, the family of all neighbourhoods,
UO; 3 Ty, > 3, T)={xeX: [[Tx, ]1<1, 1<i<<n}
corresponding to all y, .-, y. €M, Ty, -, T &L, n=1.2---, is also a neighbour-
hood basis of 0.
As X and L are dual pairs, X is a Hausdorff topological space in the weak

topology.
From the general properties of weak topologies we have the following result:

PROPOSITION 5.9. 4 g.s.tz.0. space (X, {, M) is a Hausdorff locally convex
space in the weak topology.

DEFINITION 5.10. The sets of the form
U(x; F].’ “*% F?I’ '“)={yEX: IFZ(J’—x)‘ <11 f:]_’ 2! o0y R, '"}
for all sequences F,, F,, -, F, -..&f, contsitute a neighbourhood basis at x, for

each x&X, for a topology on X which we call infra-weak topology.
Cleary infra-weak topology is finer than the weak topology and hence Haus-
dorff. Also each U(x; Fy, -+, F ,---) is convex. It is a routine matter to establ-

ish the truth of the following result.

PROPOSITION 5.11. A g.s.i.p. space (X, {, M) wilh the infra-weck topology
1s a Hausdorff locally convex space.

McMaster University
Hamilton, Ontario, Canada
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