# TOPOLOGIES ON GENERALIZED SEMI-INNER PRODUCT ALGEBRAS, LATTICES, AND SPACES

By T. Husain\* and S. M. Khaleelulla

#### 1. Introduction

In his paper [2], Lumer has introduced the concept of semi-inner product space. This concept has led Husain and Malviya [1] to introduce and study, what they call, semi-inner product algebras. In a different direction Nath [4] has used Lumer's concept to introduce, what he calls, generalized semi-inner product spaces, and has studied strong topologies on such spaces. These strong topologies have earlier been studied on generalized inner product spaces by Prugovecki [6].

In this paper we introduce, what we call, generalized semi-inner product (in short g.s.i.p.) algebras, and lattices, and show that a g.s.i.p. algebra (lattice) with strong topology is locally convex algebra (lattice). We also show that a g.s.i.p. algebra with strong topology under a restriction is locally m-convex algebra. Finally, we show that it is possible to introduce, as in [6], weak topologies in g.s.i.p. spaces, and it turns out that a g.s.i.p. space with weak topology is a Hausdorff locally convex space.

Throughout in this paper, we have used N to denote the set of natural numbers.

## 2. g.s.i.p. algebras

G. Lumer [2] calls a complex (real) vector space X a semi-inner product space (abbreviated to s. i. p. space) if to every pair of of elements  $x, y \in X$  there corresponds a complex (real) number, written as [x,y], with the following properties:

(i) 
$$[x+y,z] = [x,z] + [y,z],$$
  $[\lambda x,y] = \lambda [x,y], x,y,z \in X, \lambda : complex (real),$  (ii)  $[x,x] > 0$  for  $x \neq 0$ , and

(iii)  $|[x,y]|^2 \le [x,x][y,y].$ 

REMARK 2.1. With  $||x|| = [x, x]^{1/2}$ , a s.i.p. space becomes a normed space.

<sup>\*</sup>This research was supported by an N.R.C. Grant

It is clear from (i) and (ii) that [x, y] = 0 for all  $y \in X$  iff x = 0, Moreover, if either of x, y is zero, then [x, y] = 0.

DEFINITION 2.2. A vector space A is called a s.i.p. algebra if (a) A is a normed algebra, and (b) A is a s.i.p. space with the same norm as that of the normed algebra A,

REMARK 2.3. Our definition of a s.i.p. algebra is different from that given in [1].

DEFINITON 2.4. A vector space A is called a generalized semi-inner product algebra (abbreviated to g.s.i.p. algebra) if

- (i) A is an algebra,
- (ii) there is a subspace M of A which is a s.i.p. algebra, and
- (iii) there is a set  $\zeta$  of linear multiplicative operators on A satisfying (a)  $\zeta A \subset M$ , i.e. each member of  $\zeta$  maps A into M, and (b) Tx=0 for all  $T \subset \zeta$ , implies x=0.

We denote such a g.s. i. p. algebra by the triple  $(A, \zeta, M)$ .

EXAMPLE 2.5. Let A be the space of all measurable functions on a compact topological group G with Haar measure. A is a vector space if

$$(f+g)(x)=f(x)+f(y)$$
 and  $(\lambda f)(x)=\lambda f(x), f, g \in A, \lambda \text{ scalar.}$ 

Clearly A is an algebra. Now, consider the vector subspace  $M = L^p(G)$ ,  $2 \le p < \infty$ , of A; then M is a s.i.p. algebra if

$$(fg)(x) = \int_C f(xy^{-1})g(y)dy$$

and

$$[f, g] = \frac{1}{\|g\|_{p}^{p-2}} \int_{G} f(x) |g(x)|^{p-1} \operatorname{sgn}(g(x)) dx,$$

where

$$\|g\|_p = \left(\int_G |g(x)|^p dx\right)^{1/p}$$

and sgn is the signum function. Let  $\zeta$  be the family of operators  $E^{p-1}(S)$  defined by

 $(E^{p-1}(S)(\alpha f + \beta g))(x) = \chi_S(x)(|f(x)|^{p-2} + |g(x)|^{p-2})(\alpha f(x) + \beta g(x)),$  where  $\chi_S$  is the characteristic function of S and S is a subset of A whose Haar measure is non-zero. Clearly each  $E^{p-1}(S)$  is linear. It can easily be verified that

 $\zeta A \subset M$  and Tx=0 for all  $T \in \zeta$  implies x=0. Since

$$\chi_S = \chi_S \chi_S$$
,

it follows that each  $E^{p-1}(S)$  is multiplicative. Thus,  $(A, \zeta, M)$  is a g.s.i.p. algebra. But it is not a s.i.p. algebra.

### 3. Strong topology

Let  $(A, \zeta, M)$  be a g.s.i.p. algebra. We introduce "strong topology" in A as follows:

DEFINITION 3.1. For each  $x \in A$ , define

$$V(x; T_1, \dots, T_n; \varepsilon) = \{y \in A; [T_i(y-x), T_i(y-x)]^{1/2} < \varepsilon, 1 \le i \le n\}$$

for all  $\varepsilon > 0$ ,  $T_1$ , ...,  $T_n \in \zeta$  and  $n \in N$ . The family  $\{V(x; T_1, ..., T_n; \varepsilon): T_1, ..., T_n \in \zeta$ ,  $\varepsilon > 0$ ,  $n \in N$  forms a neighbourhood basis at x, for each  $x \in A$ , for a topology on A which we call "strong topology".

REMARK 3.2. It is known, from [4], that (i) each  $V(0; T_1, \dots, T_n; \varepsilon)$  is circled and convex, and that (ii) the topology on A for which the sets  $V(x; T; \varepsilon)$  are neighbourhoods of x for all  $\varepsilon > 0$ ,  $T \in \zeta$  is Hausdorff.

Michael [3] calls a subset of an algebra m-convex (multiplicatively convex if V is convex and idempotent (i.e.  $VV \subset V$ ).

LEMMA 3.3. Let  $(A, \zeta, M)$  be a g.s.i.p. algebra. Then each  $V(0; T_1, \dots, T_n; \varepsilon)$ ,  $0 < \varepsilon \le 1$ , is m-convex.

PROOF. Clearly  $V(0; T_1, \dots, T_n; \varepsilon)$  is convex by 3.2. We show that it is idempotent i.e.  $V(0; T_1, \dots, T_n; \varepsilon)V(0; T_1, \dots, T_n; \varepsilon) \subset V(0; T_1, \dots, T_n; \varepsilon)$   $(0 < \varepsilon \le 1)$ . Let  $x, y \in V(0; T_1, \dots, T_n; \varepsilon)$ . Then,

$$\begin{split} [T_k(xy), \ T_k(xy)]^{1/2} &= [T_k(x)T_k(y), \ T_k(x)T_k(y)]^{1/2}, \ 1 \leq k < n \\ &\leq [T_k(x), \ T_k(x)]^{1/2} [T_k(y), \ T_k(y)]^{1/2} < \varepsilon^2 \leq \varepsilon. \end{split}$$

This implies that  $xy \in V(0; T_1, \dots, T_n; \varepsilon)$  for all  $x, y \in V(0; T_1, \dots, T_n; \varepsilon)$ ,  $0 < \varepsilon \le 1$ , and this establishes the idempotentness of  $V(0; T_1, \dots, T_n; \varepsilon)$ ,  $0 < \varepsilon \le 1$ . Hence it is m-convex.

A locally convex algebra is an algebra and a Hausdorff locally convex space such that the multiplication is continuous in each variable separately ([3], page 3). A locally convex algebra is called locally *m*-convex algebra if there exists a neighbourhood basis of 0 consisting of *m*-convex sets ([3], page 6).

THEOREM 3.4. A g.s.i.p. algebra  $(A, \zeta, M)$  equipped with the strong topology, as defined in 3.1, is a locally convex algebra.

PROOF. In view of ([4], 3.3),  $(A, \zeta, M)$  is a Hausdorff locally convex space. To complete the proof we show that for any  $V(x_0x; T_1, \dots, T_n; \varepsilon)$ , there exists

$$V\left(x; T_{1}, \cdots, T_{n}; \frac{\varepsilon}{\lambda}\right), \lambda = \max_{1 \leq k \leq n}(\lambda_{k}),$$

$$\lambda_{k} = \left[T_{k}(x_{0}), T_{k}(x_{0})\right]^{1/2}, k = 1, \cdots, n, \text{ such that}$$

$$x_{0}V\left(x; T_{1}, \cdots, T_{n}; \frac{\varepsilon}{\lambda}\right) \subset V(x_{0}x; T_{1}, \cdots, T_{n}; \varepsilon).$$

Let  $y \in V(x; T_1, \dots, T_n; \frac{\varepsilon}{\lambda})$ ; then

$$[T_k(y-x), T_k(y-x)]^{1/2} < \frac{\varepsilon}{\lambda}, k=1, 2, \dots, n.$$

Now,

$$\begin{split} \left[T_{k}(x_{0}y-x_{0}x), \ T_{k}(x_{0}y-x_{0}x)\right]^{1/2} &= \left[T_{k}x_{0}(y-x), \ T_{k}x_{0}(y-x)\right]^{1/2} \\ &= \left[T_{k}(x_{0})T_{k}(y-x), \ T_{k}(x_{0})T_{k}(y-x)\right]^{1/2} \\ &\leq \left[T_{k}(x_{0}), T_{k}(x_{0})\right]^{1/2} \left[T_{k}(y-x), \ T_{k}(y-x)\right]^{1/2} \\ &< \lambda \frac{\varepsilon}{\lambda} = \varepsilon. \end{split}$$

This implies that  $x_0 y \in V(x_0 x; T_1, \dots, T_n; \varepsilon)$ , for all  $y \in V(x; T_1, \dots, T_n; \varepsilon/\lambda)$ , and this proves that

$$x_0V(x; T_1, \dots, T_n; \varepsilon/\lambda) \subset V(x_0x; T_1, \dots, T_n; \varepsilon).$$

Similarly, we can show that

$$V(x; T_1, \dots, T_n; \varepsilon/\lambda)x_0 \subset V(xx_0; T_1, \dots, T_n; \varepsilon).$$

This shows that  $(A, \zeta, M)$  is a locally convex algebra under the strong topology.

COROLLARY 3.5. A g.s.i.p. algebra  $(A, \zeta, M)$  equipped with the strong topology for which the family  $\{V(x; T_1, \dots, T_n; \varepsilon); T_1, \dots, T_n \in \zeta, 0 < \varepsilon \le 1, n \in N\}$  forms a neighbourhood basis of x, for each  $x \in A$ , is a locally m-convex algebra.

PROOF. The result follows from 3.3 and 3.4 if  $\lambda$ , as defined in 3.4, is greater than or equal to 1. If  $\lambda < 1$  then the result follows from 3.3, because we can show that for any  $V(x_0x; T_1, \dots, T_n; \varepsilon)$ , there exists  $V(x; T_1, \dots, T_n; \varepsilon)$  such that

$$x_0V(x; T_1, \dots, T_n; \varepsilon) \subset V(x_0x; T_1, \dots, T_n; \varepsilon).$$

THEOREM 3.6. A g.s.i.p. algebra  $(A, \zeta, M)$  with strong topology is metrizable

if there is a countable subset C of  $\zeta$  which has the property that for any  $T \in \zeta$  there is a  $P \in N$ , where N is the linear manifold generated by C, such that  $[Tx, Tx]^{1/2} \leq [Px, Px]^{1/2}$  for all  $x \in A$ .

PROOF. Same as that of ([4], 3.4).

## 4. g. s. i. p. lattices

In this section, we consider only the real vector spaces.

DEFINITION 4.1. An ordered vector space X is called a semi-inner product lattice (in short s.i.p. lattice) if (a) X is a normed lattice, and (b) X is a s.i.p. space with the same norm as that of the normed lattice X.

A subset B of a vector lattice X is solid if  $|x| \le |y|$ ,  $y \in B$  implies  $x \in B$ , where  $|x| = \sup \{-x, x\}$ . A vector subspace M of X is a lattice ideal if M is a solid subset of X. Every lattice ideal M in a vector lattice X is a sublattice of X ([5], page 35). Every solid set is circled.

A linear map from a vector lattice into a vector lattice is called a lattice homomorphism if it preserves lattice operations. (For more details, see [5]).

DEFINITION 4.2. An ordered vector space X is called a generalized semi-inner product (in short g.s.i.p.) lattice if

- (i) X is a vector lattice,
- (ii) there is a lattice ideal M of X which is a s.i.p. lattice, and
- (iii) there is a set  $\tau$  of lattice homomorphisms on X such that (a)  $\tau X \subset M$ , i.e. each member of  $\tau$  maps X into M, and (b) hx=0 for all  $h\in \tau$  implies x=0.

We denote such a g.s.i.p. lattice by the triple  $(X, \tau, M)$ . The example given in [4] is in fact a g.s.i.p. lattice.

As in section 2, we define

 $V(x; h_1, \dots, h_n; \varepsilon) = \{y \in X; [h_i(y-x), h_i(y-x)]^{1/2} < \varepsilon, 1 \le i \le n\}, \text{ for all } \varepsilon > 0, h_1, \dots, h_n \in \tau \text{ and } n \in \mathbb{N}.$ 

LEMMA 4.3. Each  $V(0; h_1, \dots, h_n; \varepsilon)$  is solid.

PROOF. Let  $|x| \le |y|$  and  $y \in V(0; h_1, \dots, h_n; \varepsilon)$ . Then (\*)  $[h_i(y), h_i(y)]^{1/2} < \varepsilon$ ,  $1 \le i \le n$ . Since each  $h_i$  is a lattice homomorphism,  $|x| \le |y|$  implies that  $|h_i(x)| \le |h_i(y)|$ . But then, since M is a normed lattice, we have

$$||h_i(x)|| \leq ||h_i(y)||$$

i.e. 
$$[h_i(x), h_i(x)]^{1/2} \le [h_i(y), h_i(y)]^{1/2} < \varepsilon$$
, by (\*).

This implies that  $x \in V(0; h_1, \dots, h_n; \varepsilon)$ , and hence each  $V(0; h_1, \dots, h_n; \varepsilon)$  is solid.

An ordered locally convex space which is a vector lattice is called a locally convex lattice if there is a neighbourhood basis of 0 consisting of solid sets ([5], page 103).

THEOREM 4.4. A g.s.i.p. lattice  $(X, \tau, M)$  equipped with the strong topology for which the family  $\{V(x; h_1, \dots, h_n; \varepsilon) : \varepsilon > 0, h_1, \dots, h_n \in \tau, n \in \mathbb{N}\}$  forms a neighbourhood basis at x, for each  $x \in X$ , is a locally convex lattice.

PROOF. In view of ([4], 3.3),  $(X, \tau, M)$  is a Hausdorff locally convex space; hence it is an ordered locally convex space, because X is an ordered vector space ([5], page 63). The result now follows from 4.3.

The sets of the form

$$V(x; h_1, h_2, \dots; \varepsilon) = \bigcap_{k=1}^{\infty} V(x; h_k; \varepsilon), h_k \in \tau, \varepsilon > 0,$$

constitute a neighbourhood basis at x, for each  $x \in X$ , for a topology on X called ultra-strong topology.

Clearly ultra-strong topology is finer than the strong topology, and hence Hausdorff.

REMARK 4.5. Since the intersection of solid sets is solid, it follows that each  $V(0; h_1, h_2, \dots; \varepsilon)$  is solid. Also it is convex.

THEOREM 4.6. A g.s.i.p. lattice  $(X, \tau, M)$  equipped with ultra-strong topology is a locally convex lattice.

PROOF.  $(x, \tau, M)$  is a Hausdorff locally convex space [4], and hence ordered locally convex space. The result now follows from 4.5.

#### 5. Weak topology

A vector space X is a g.s.i.p. space if

- (i) there is a subspace M of X which is a s.i.p. space,
- (ii) there is a (non-empty) set  $\zeta$  of linear operations on X satisfying (a)  $\zeta X \subset M$ , i.e. each element of  $\zeta$  maps X into M, and (b) Tx=0 for all  $T \in \zeta$  implies x=0 [4].

LEMMA 5.1. Let  $(X, \zeta, M)$  be a g.s.i.p. space and  $x \in X$ . If [Tx, x] = 0 for

all  $y \in M, T \in \zeta$ , then x = 0.

PROOF. In view of (ii) (b), we have Tx=0 for all  $T \in \zeta$ . But then, by 2.4, it follows that x=0.

LEMMA 5.2. Let  $(X, \zeta, M)$  be a g.s.i.p. space and  $x \in X$ . If [Tx, Tx] = 0 for all  $T \in \zeta$ , then x = 0.

PROOF. First we observe that Tx=0; because if  $Tx\neq 0$ , then by the definition of semi-inner product Space, it follows that [Tx, Tx] > 0 which contradicts the hypothesis. Since Tx=0 for all  $T\in \zeta$ , it follows from (ii)(b) that x=0.

DUAL SPACE 5.3. Let  $(X, \zeta, M)$  be a g.s.i.p. space. For each  $T \in \zeta$  and each  $y \in M$ , we define.

$$F(x; T, y) = [Tx, y]$$
 on X.

Clearly F is linear functional on X, Let  $L_0$  be the family of all such functionals; it is not a vector space, in general. Denote by L the vector space (over the same field as that of X) spanned by  $L_0$ .

PROPOSITION 5.4. L and X constitute a dual pair.

PROOF. If F(x)=0 for all  $F \in L$ , then [Tx, y]=0 for all  $y \in M$  and all  $T \in \zeta$ . But then, in view of 5.1, x=0.

Conversely if for a given  $F_0 \in L$  we have that  $F_0(x) = 0$  for all  $x \in X$ ; then, by definition,  $F_0$  is the zero element of L.

NOTATION 5.5.  $\langle x, F \rangle = F(x)$ ,  $x \in X$ ,  $F \in L$ . Clearly  $\langle x, F \rangle$  is a bilinear function on X and L.

PROPOSITION 5.6. Each  $F \subseteq L$  is continuous on X in the strong topology.

PROOF. Let  $\varepsilon > 0$ .

$$|F(x; T, y) - F(x_0; T, y)| = |[Tx, y] - [Tx_0, y]|$$

$$= |[T(x - x_0), y]|$$

$$\leq [T(x - x_0), T(x - x_0)]^{1/2} [y, y]^{1/2} < \varepsilon$$

whenever

$$[T(x-x_0), T(x-x_0)]^{1/2} < \frac{\varepsilon}{[y,y]^{1/2}},$$

because [y, y] > 0 for  $y \neq 0$ , i.e. for all  $x \in V(x_0; T, \frac{\varepsilon}{[y, y]^{1/2}})$ . Thus each element of L is a continuous linear functional on E equipped with strong topology.

Hence the continuity of an arbitrary element of L follows.

REMARK 5.7. The above proposition says that L is contained in the vector space conjugate to X with strong topology.

DEFINITION 5.8. The coarsest topology on X for which all the linear functionals from L are continuous is called the weak topology.

The family of all subsets of X of the form,

$$U(x ; F_1, \dots, F_n) = \{y \in X: |F_i(y-x)| < 1, 1 \le i \le n\}$$

for all  $F_1$ , ...,  $F_n \subseteq L$ ,  $n \subseteq N$ , is a neighbourhood basis at x.

Since  $L_0$  generates L, the family of all neighbourhoods,

$$U(0; y_1, T_1, \dots, y_n, T_n) = \{x \in X: | [T_i x, y_i] | < 1, 1 \le i \le n\}$$

corresponding to all  $y_1$ , ...,  $y_n \in M$ ,  $T_1$ , ...,  $T_n \in \zeta$ , n=1,2..., is also a neighbourhood basis of 0.

As X and L are dual pairs, X is a Hausdorff topological space in the weak topology.

From the general properties of weak topologies we have the following result:

PROPOSITION 5.9. A g.s.i.p. space  $(X, \zeta, M)$  is a Hausdorff locally convex space in the weak topology.

DEFINITION 5.10. The sets of the form

$$U(x; F_1, \dots, F_n, \dots) = \{y \in X: |F_i(y-x)| < 1, i=1, 2, \dots, n, \dots\}$$

for all sequences  $F_1$ ,  $F_2$ , ...,  $F_n$ , ...  $\in \zeta$ , contsitute a neighbourhood basis at x, for each  $x \in X$ , for a topology on X which we call infra-weak topology.

Cleary infra-weak topology is finer than the weak topology and hence Hausdorff. Also each  $U(x; F_1, \dots, F_n, \dots)$  is convex. It is a routine matter to establish the truth of the following result.

PROPOSITION 5.11. A g.s.i.p. space  $(X, \zeta, M)$  with the infra-weak topology is a Hausdorff locally convex space.

McMaster University
Hamilton, Ontario, Canada

#### REFERENCES

- [1] T. Husain and B.D. Malviya, On semi-inner product spaces II, Colloquium Mathematics, vol. XXVII, Fasc. 1 (1973), 95-105.
- [2] G. Lumer, Semi-inner product spaces, Transactions of the A.M.S. 100 (1961), 29-43.
- [3] E.A. Michael, Locally multiplicatively-convex topological algebras, Memoirs of the A.M.S., no. 11 (1952).
- [4] B. Nath, Topologies on generalized semi-inner product spaces, Compositio Mathematica, vol. 23, Fasc. 3, (1971), 309-316.
- [5] A.L. Peressini, Ordered toporogical vector spaces, Harper & Row, New York (1967).
- [6] E. Prugovecki, Topologies on generalized inner product spaces, Canadian J. Math. 21 (1969), 158-169.