A Construction of Submartingales From Supermartingales

By Kang Sup Lee

Cheong Ju University, Cheong Ju, Korea

1. Introduction

Let $\{X_1, X_2, \dots\}$ be a sequence of integrable random variables on probability space $(\Omega, \mathfrak{F}, P)$, and $\mathfrak{F}_1 \subset \mathfrak{F}_2 \subset \dots$ an increasing sequence of sub σ -fields of \mathfrak{F} ; X_n is assumed \mathfrak{F}_n -measurable.

Ash [1] showed that how to construct submartingales from other submartingales or martingales. Similarly, we have the method of submartingales from supermartingales.

2. Preliminary

Definition. $\{X_n, \mathfrak{F}_n\}$ is a martingale iff for all $n=1, 2, \dots E(X_{n+1}|\mathfrak{F}_n)=X_n$ a. e. $\{X_n, \mathfrak{F}_n\}$ is a submartingale iff for $n=1, 2, E(X_{n+1}|\mathfrak{F}_n) \ge X_n$ a. e. $\{X_n, \mathfrak{F}_n\}$ is a supermartingale iff for all $n=1, 2, E(X_{n+1}|\mathfrak{F}_n) \le X_n$ a. e.

The following lemma is due to Ash [1], so we omit the proof.

Lemma. (Jensen's Inequality) Let g be a convex function from I to R, where I is open interval of reals. Let X be a random variable on $(\Omega, \mathfrak{F}, P)$, with $X(\omega) \in I$ for all ω . Assume E(X) to be finite. If \mathfrak{F} is a sub σ -field of \mathfrak{F} , then $E[g(X)|\mathfrak{F}] \geq g[E(X|\mathfrak{F})]$ a.e.

3. Result

Theorem. Let $\{X_n, \mathfrak{F}_n\}$ be a supermartingale, g a convex, decreasing function from R to R. If $g(X_n)$ is integrable for all n, then $\{g(X_n), \mathfrak{F}_n\}$ is a submartingale.

REFERENCE

[1] Ash, R.B. (1972) Real Analysis and Probability Academic Press, New York.