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Completion Of The Space Of Distribution
Under Paul Levy Metrics

By In Hwan Chung

Yon Sei University, Seoul, Korea

We consider the space of all distribution functions and we give the Paul Levy metrics
L(F,3), between two distribution function F(x) and G(x), as the infimum of all positive
h such that the inequality

) F(x—h)—h-G(x) <F(x+h)+h
holds for all x.

Lemma. 7The sequence of distribution functions {F,(x)} converges weakly fo the
distribution fumction F(x) if, and only if, lim L(F,, F)=0.

Proof. First of all, we prove that the condition is necessary. Since F(X) is a
distribution function, It is always possible to find two continuity points a and b of F(x)
such that

@ F@<e/2, 1-Fb)<e/2
for an arbitrary positive number .
We select m continuity points of F(x) in the interval (a,b] such that
a=t,<t; <t <+ <t <t,s1=b
tpar—t,<e (k=0,1,2, -, m).
Since the t, are continuity points of F(x), we conclude from assumption that it is possible
to choose a number N so large that
(3 IF,(t)—F(t)] <e/2
for n>N and k==0,1,2, .-, m-+1.
In order to prove that IimL(F,, F)=0, we have to show that for arbitrary ¢>0 the
relation
4 Fx—e—e<F,(x)<F(x+e) +e¢
holds for all x, provided n is chosen sufficiently large. We have to distinguish three
cases:

Case . If x<a, then we conclude from (2) and (3) that

F.(x)<F, (@) Fa)+e2<e<F(x+e)+e,
F.(x)20=zF@ —¢2F(x—e) —e¢
provided n>N.



Case . If t,.;<x<t, then we conclude from (3) that
F.(x)<F,(t)<F{)+e/22F(X+e) e
F.(x)>F,(t,_)—e/2>F(x—¢)—¢

provided n>N.

Case M. If x>b, then we conclude from (2) and (3) that
F,(xX)<1<F)+e/2<F(x+e)+e,
F.(x)=2F,(b)>F()—¢/2>1—-¢>F(X—€¢)—¢

provided n>N, Therefore (4) holds for all x if n>N. Since ¢ is arbitrary, this means that
lim L(F,, F)=0.

n—s0

To prove the sufficiency of the condition, let x, be a continuity point of F(x), and let ¢
be an arbitrary possitive number; then there exists a >0 such that
)] IFGO~F&x,)1<e
for all x for which
{x-x,] <4.
Let y=min (¢, 6) and choose N so large that L(F, F)<y for n=N. According to (1) and
(5) we have
F.(x)2Fx,~—r=2F(x,)—2€
and F.(x)<F&x,+r)+r<F(x,)+2e,
hence IF,(x)—Fx,) | <2e.
Since ¢ and the continuity point x, are arbitrary, this means that Inir.n F.(xX)=F&).

We use the first theorem of Helly (Every sequence {F,(x)} of uniformly bounded
functions of M contains a subsequence {F,,(x)} which converges to some function F(x) €M
at every continuity point of F(x). ref. to]) to prove our main theorem.

Theorem. The space of distribution functions with the Levy distance L(F,G)is complele.
Proof. To prove the theorem we assume that for any ¢>0 there exist an N=N(¢
such that

®) L(F, F.)<e ,
for n,m>N. Since the F,(x) are distribution functions, we have 0<F(x) <1 according to
the first theorem of Helly.
We note that it is always possible to find an x, such that F(x,) <e and we select n,>N,
m>N. We see from (6) that L(F,, F,) and choose a continuity point x of F(x) for
which x<x,—e.
then F.x)<F.(x,—e) <F,(X,) +e<2e
Therefore F (X)=2imF,,(X)S26 if x is a continuity point of F(x) and x<x,—e This
means that F(—o0)=0.
In the same way, one can show that F(+o0)=1, so that F(x) is a distribution function.
It follows from lemma that

M lim L(F,,, F)=0.
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We conclude finally {rom (6), ¢7), and the triangle inequality that L(F, F) can be made
arbitrary small by choosing n sufficiently large. The sequence F,(X) converges, therefore,
to F(x) in the metric of the Levy distance.
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