On The Category Of G-sets

By Im Geun Bin

Cheong Ju University, Cheong Ju, Korea.

1. Introduction.

Let G be a group and S a set. An operation of G on S is a map $f: G \times S \longrightarrow S$ which, if we denote f(g,s) by gs for all g in G and s in S, satisfies;

- (i) 1s=s for all s in S and the identity element $1 \in G$,
- (ii) $(g_1g_2)s=g_1(g_2s)$ for all $g_1,g_2 \in G$ ((1),(2)).

A set S together with an operation of G on S is called a G-set ((1)).

The category $\mathcal{C}(G)$ whose object is the single group G and set of morphisms $\operatorname{Hom}_{\mathcal{C}(G)}(G,G)$ is the set G is called the category of the group G.

Definition. Let G be a group. If S_1 and S_2 are G-sets, then a G-morphism from S_1 to S_2 is a map of the sets $f: S_1 \rightarrow S_2$ satisfying

f(gs)=gf(s) for all g in G and s in S.

The category with objects the G-sets and morphisms the G-morphisms is called the *category* of G-sets and denoted by G-sets.

In this paper we shall prove the theorem: The category $Funct(\mathcal{G}(G), Sects)$ of functors from the category of the group G to the category Sets of all sets is equivalent to the category G-sets.

2. G-sets.

Proposition. (a) For each G-set S, id, $: S \longrightarrow S$ is a G-morphism.

- (b) If S_1, S_2, S_3 are G-sets and $f: S_1 \longrightarrow S_2$ and $h: S_2 \longrightarrow S_3$ are G-morphisms, then the ordinary composition of maps $hf: S_1 \longrightarrow S_3$ is a G-morphism.
- (c) The following data define a category which is called the category of G-sels and is denoted by G-Sets.
 - (i) The objects of G-Sets are the G-sets.
 - (ii) For each pair of objects S_1 and S_2 of G-Sets, G-Sets(S_1 , S_2) is the set of all G-morphisms from S_1 to S_2 .
- (iii) For each triple S_1 , S_2 and S_3 of objects of G-Sets, the composition map $(G_1, S_2) \times G_2 \times G_3 \times G_3 \times G_4 \times G_4 \times G_5 \times$

Proof. (a) $id_s(gs)=gs=gid_s(s)$ for all g in G and s in S.

- (b) hf(gs)=h(gf(s))=g(h(f(s)))=g(hf(s)) for all g in G and s in S₁.
- (c) If S_1, S_2, S_3, S_4 are objects in G-sets and f is in G-sets (S_1, S_2) , g is in G-sects (S_2, S_3) , and h is in G-sets (S_3, S_4) , then h(gf) = (hg)f since the ordinary composition of maps is associative and h(gf) and (hg)f are G-morphisms by (a).

Next for each object S in G-sets, there is an id, in G-Sets (S, S) such that for each object S₁ in G-sets, we have $fid_i = f$ for all f in G-sets (S, S₁) while $id_i g = g$ for all g in G-sets (S₁, S), which completes the proof.

3. The category G-sets.

By the proposition in 2, we obtain the category G-sets with objects G-sets and arrow G-morphisms.

Lemma 1. Let G be a group and $\theta(G)$ be the category of G. Let $F: \theta(G) \longrightarrow Sets$ be a functor. If $\alpha(F)$ is the set F(G) and for each g in G and s in F(G), f(g,s)=gs = F(g)(s), then f is an operation of G on F(G) and $\alpha(F)$ is the G-set.

Proof. For the identity element $1 \in G$ and for g_1 , $g_2 \in G$, $1s = F(1)(s) = 1_{F(G)}(s) = s$ for all s in F(G).

$$(g_1, g_2)s = F(g_1g_2)(s) = F(g_1)F(g_2)(s) = F(g_1) (F(g_2)(s)) = g_1(g_2s).$$

Lemma 2. Let $F_1, F_2 : \mathcal{C}(G) \longrightarrow Sets$ be functors and let $\rho : F_1 \longrightarrow F_2$ be a morphism of functors. Then the map $\rho : \alpha(F_1) \longrightarrow \alpha(F_2)$ $\downarrow \qquad \qquad \downarrow \qquad$

is a morphism of G-sets.

Proof. For all g in G and s in $\alpha(F_1)$, $\rho_c(gs) = \rho_c(F_1(g)(s)) = F_2(g)(\rho_c(s)) = g(\rho_c(s))$, since ρ is morphism of functors.

Theorem. Let Funct(G(G), Sets) be the category of functors from the category of the group G to the category Sets of all sets. For every functor $F: G(G) \longrightarrow Sets$ and for all morphisms of functors $\rho: F_1 \longrightarrow F_2$ in Funct G(G), Sets), if $\alpha(F) = F(G)$ and $\alpha(\rho) = \rho: F_1(G) \longrightarrow F_2(G)$, then α is an equivalence functor from the category Funct(G(G), Set(G(G)) to the category G-sets.

Proof. For two morphisms $\rho_1: F_1 \longrightarrow F_2$ and $\rho_2: F_2 \longrightarrow F_3$ in Funct ($\mathcal{C}(G)$, Sets),

$$\alpha(\rho_2\rho_1) = (\rho_2\rho_1)_G = (\rho_2)_G(\rho_1)_G = \alpha(\rho_2)\alpha(\rho_1)$$

and for the identity morphism $1_F: F \longrightarrow F$,

$$\alpha(1_F) = (1_F)_G = 1_{F(G)} = 1_{\alpha(F)}$$

Therefore α is a functor.

Next, for every G-sets S in Ob(G-sets) and all G-morphisms $f: S_1 \longrightarrow S_2$ in G-sets, if $\beta(S)(G)=S \in Ob(Sets)$ and $\beta(f)_G=f$, then for $S_1 \xrightarrow{f_1} S_2 \xrightarrow{f_2} S_3$ in G-sets

$$(\beta(f_2f_1))_G = f_2f_1 = \beta(f_2)_G\beta(f_1)_G = (\beta(f_2)\beta(f_1))_G$$

and for $1_s: S \longrightarrow S$, $\beta(1_s)_c = 1_s = 1_{\beta(s) \in G}$

Hence β is also a functor from G-sets to Funct (θ (G), Sets).

$$(\beta\alpha(F)) = \beta(\alpha(F)) = \beta(F(G)) \in Funct (\beta(G), Sets).$$

But $(\beta\alpha(F))(G) = \beta(FG))(G) = F(G) = [{}^{1}_{Fund}(\sigma_{(G)}, Sets)}(F)](G)$

Therefore $\beta \alpha = 1_{\text{Funct}(\delta(G), \text{ Sets})}$

Similarly $\alpha\beta = 1_{S-sets}$, which completes the proof.

REFERENCES

- 1. M. Auslander, D. A. Buchsbaum, (1974) *Group, Rings, Modules*. Harper & Raw New York.
- 2. N. Jacobson, (1974) Basic Algebra 1. W.H. Freeman and Co. San Francisco.