A Note On The Quasi-Pseudo-Metrizability By Jung Wan Nam

Gyeonsang National University, JinJu, Korea

1. Introduction

The notion of quasi-pseudo-metric spaces which is an extension of pseudo-metric spaces was introduced by W. A. Wilson and has been studied by M. Sion, G. Zelmer [3] and C. W. Patty [4].

A quasi-pseudo-metric for a set X is a mapping p of $X \times X$ into the non-negative reals satisfying, for all $x, y, z \in X$, the following axioms

i)
$$p(x, x) = 0$$
,

ii)
$$p(x,z) \leq p(x,y) + p(y,z)$$
.

If x is a point of a set X with a quasi-pseudo-metric p, and ε is any positive real number, then the set of all points $y \in X$ such that $p(x,y) < \varepsilon$ will be called the ball with center x and radius ε and will be denoted by $S_p(x,\varepsilon)$. If X is a set with a quasi-pseudo-metric p, the topology for X which is obtained by using, as a base, the family of all balls of points is said to be induced by the quasi-pseudo-metric p. A quasi-pseudo-metric space is a pair (X,p) such that p is a quasi-pseudo-metric for X. A topological space (X,3) is quasi-pseudo-metrizable iff there exists a quasi-pseudo-metric for X which induces 3.

The purpose of this paper is to prove the following theorems.

Theorem 1. Let (X, \mathfrak{F}) be a topological space. If there exists a base \mathfrak{L} of \mathfrak{F} such that $\mathfrak{L}_x = \{B \in \mathfrak{L} \mid x \in B\}$ is a countable decreasing chain (that is, $\mathfrak{L}_x = \{B_1^x, B_2^x, \cdots\}$, $B_1^x \supseteq B_2^x \supseteq \cdots$) for each $x \in X$, then (X, \mathfrak{F}) is quasi-pseudo-metrizable.

Theorem 2. Let (X, \mathfrak{F}) be a first countable space, and $X_1 = \{x \in X \mid \mathfrak{F}_x \text{ has no minimat member with respect to } \subset \}$, where $\mathfrak{F}_x = \{O \in \mathfrak{F} \mid x \in O\}$ for each $x \in X$. If X_1 is a finite set and $\bigcup \{V_x \mid x \in X - X_1\} \subset X - X_1$, (where V_x is the minimal member of \mathfrak{F}_x), then (X, \mathfrak{F}) is quasi-pseudo-mtrizable.

2. Main Theorems

Theorem 1. Let (X, \mathfrak{F}) be a topological space. If there exists a base \mathfrak{L} of \mathfrak{F} such that $\mathfrak{L}_{+} = \{B \in \mathfrak{L} \mid x \in B\}$ is a countable decreasing chain (that is, $\mathfrak{L}_{x} = \{B_{1}^{x}, B_{2}^{x}, \cdots\}$, $B_{1}^{x} \supseteq B_{2}^{x} \supseteq \cdots$) for each $x \in X$, then (X, \mathfrak{F}) is quasi-pseudo-metrizable.

Proof. Let 2 be a base of 3 satisfying the condition of the theorem. Choose a relation

< which well orders the family \mathfrak{L} . For each $x \in X$, let $B_{x,1}$ be the first member of \mathfrak{L}_x with respect to the order <, $B_{x,2}$ be the first member of $\{B \in \mathfrak{L}_x | B \subseteq B_{x,1}\}$ if this family is non-void. In this way, we obtain $\mathfrak{L}'_x = \{B_{x,1}, B_{x,2}, \cdots\}$. Then, for each B_i^x , there exists $B_{x,i}$ such that $B_i^x \supset B_{x,i,i}$.

For $A \subset X$, let

$$p_A(x, y) = \begin{cases} 1 : x \in A, & y \in X - A, \\ 0 : \text{otherwise.} \end{cases}$$

For each $u \in X$, define p_u as following

$$p_{u}(x, y) = \sum_{i=1}^{n} \frac{1}{2^{i}} p_{B_{u,i}}(x, y),$$

and

$$p(x,y) = \sup \{p_u(x,y) | u \in X\}.$$

Clearly, p_u is a quasi-pseudo-metric on X for each $u \in X$ and consequently p is a quasi-pseudo-metric for X.

We assert that the topology \Im , induced by p equals to \Im .

Let $x \in B \in \mathbb{R}$, then there exists $B_{s,n} \subset B$. Let $\varepsilon = \frac{1}{2^n}$.

If
$$p(x, y) < \varepsilon$$
, then $p_x(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} p_{B_{x,i}}(x, y) < \varepsilon$.

Hence $y \in B_{x,n}$. It follows that $S_{\rho}(x, \varepsilon) \subset B$. Thus \Im is coaser than \Im_{ρ} .

Let
$$x \in S_{\rho}(x, \varepsilon)$$
, $\varepsilon > 0$.

Case 1. \mathfrak{L}_x is a finite family, $(\mathfrak{L}_x = \{B_1^x, B_2^x, \dots, B_1^x\})$.

For each $y \in B_i^r$, we have p(x, y) = 0, and hence $B_i^r \subset S_{\ell}(x, \epsilon)$.

Case 2. 2, is not a finite family.

Let
$$U_i = \{B_{u,i} | u \in X\} \quad (\subset \mathfrak{L}), \quad i = 1, 2, \cdots,$$

 $U_i(x) = \{B \in U_i | x \in B\} \quad (\subset \mathfrak{L}_r).$

We shall show $U_i(x) \subset \{B_i^x, B_2^x, \dots, B_r^x = B_{x,i}\}$ for each $l \dots (*)$

Let $x \in B_{u,1}$, $B_{x,1} = B_p^x$, then $B_{u,1} = B_i^x$ for some l. If l > p, then $u \in B_{x,1}$, since $B_{u,1} \subset B_{x,1}$. This is contradict to $B_{x,1} < B_i^x = B_{u,1}$. Hence $U_1(x) \subset \{B_1^x, B_2^x, \cdots, B_p^x = B_{x,1}\}$. Assume $U_i(x) \subset \{B_1^x, B_2^x, \cdots, B_{x,i}\}$. Let $x \in B_{u,i+1}$, $B_{x,i+1} = B_x^x$. Then $B_{u,i+1} = B_i^x$ for some l. Suppose l > s. Then by induction hypothesis and $B_{x,1} < B_{x,2} < \cdots < B_{x,n} < B_{x,n+1} < \cdots$, we have $B_{u,i+1} \le B_{x,i+1}$. This is contradict to $B_i^x > B_{x,i+1}$. Therefore $U_{i+1}(x) \subset \{B_1^x, B_2^x, \cdots, B_x^x = B_{x,i+1}\}$.

Now, choose n such that $\frac{1}{2^n} < \varepsilon$, and let $y \in B_{x,n+1}$. Then by (*), $p_u(x,y) = \sum_{i=1}^{n} \frac{1}{2^i} p_{B_{u,i}}(x, y) \le \frac{1}{2^{n+2}} + \frac{1}{2^{n+3}} + \dots < \frac{1}{2^n} < \varepsilon$ for each $u \in X$, and hence $p(x, y) < \varepsilon$. Thus \Im is finer than \Im_{ρ} .

Remark. In the paper [3], M. Sion and G. Zelmer proved that a topological space having a σ -point finite base is quasi-pseudo-metrizable. In the proof of theorem 1, we constructed a σ -point finite base, hence theorem 1 is proved by use of M. Sion and G. Zelmer's result. But our purpose is to prove the theorem by direct construction.

Theorem 2. Let (X, \mathfrak{F}) be a first countable space, and

 $X_1 = \{x \in X | \mathcal{J}_x \text{ has no minimal member with respect to } \subset \}$,

where $\mathfrak{J}_{*} = \{O \in \mathfrak{J} | x \in O\}$ for each $x \in X$.

If X_1 is a finite set and $\bigcup \{V_x | x \in X - X_1\} \subset X - X_1$ (where V_x is the minimal member of \mathfrak{F}_x), then (X,\mathfrak{F}) is quasi-pseudo-metrizable.

Proof. For each $x \in X_1$, let $\{V(x, i) | i=1, 2, \cdots\}$ be a open local base of x.

Define $p_u(x, y) = \frac{1}{2}p_{1,x}(x, y)$, if $u \notin X_1$, where V_u is the minimal member of \mathfrak{F}_u , and for $A \subset X$, p_A is a quasi-pseudo-metric on X defined in the proof of theorem 1, and define

$$p_{u}(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^{i}} p_{V(u, i)}(x, y) \text{ if } u \in X_{1}$$

and $p(x, y) = \sup \{p_u(x, y) | u \in X\}.$

Let $x \in U \in \mathfrak{F}$. If $x \notin X_1$, then $S_p(x, \frac{1}{2}) \subset U$. For, $p(x, y) < \frac{1}{2}$ implies $y \in V_r$ since $p_x(x, y) = \frac{1}{2} p_{V_r}(x, y) < \frac{1}{2}$. If $x \in X_1$, choose V(x, n) such that $x \in V(x, n) \subset U$. It follows that $S_p(x, \frac{1}{2^n}) \subset U$ because $p(x, y) < \frac{1}{2^n}$ implies

$$p_x(x, y) = \sum_{i=1}^{n} \frac{1}{2^i} p_{V(u, i)}(x, y) < \frac{1}{2^n}.$$

Thus 3 is coaser than 3,.

Let $x \in S_{\rho}(x, r)$, r > 0.

If $x \in X_1$, $V_x \subseteq S_p(x, r)$, where V_x is the minimal member of \mathfrak{F}_x .

If $x \in X_1$, let $-\frac{1}{2^n} < r$, and choose V(x, 1) such that

$$V(x, 1) \subset \cap \{V(u, j) | x \in V(u, j), u \in X_1, j=1, 2, \dots, n+1\}.$$

Then $V(x, 1) \subseteq S_t(x, r)$. For $y \in V(x, 1)$ implies

$$p_{u}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \frac{1}{2^{i}} p_{v(u,i)}(\mathbf{x}, \mathbf{y}) \le \frac{1}{2^{n+2}} + \frac{1}{2^{n+3}} + \dots < \frac{1}{2^{n}} < \mathbf{r}$$

for all $u \in X_1$,

$$p_{\pi}(x,y) = \frac{1}{2} p_{\Gamma_{\bullet}}(x,y) = 0$$
 for all $u \notin X_1$, since $x \notin V_{\bullet,\bullet}$

and hence p(x, y) < r. Thus \mathfrak{F}_p is coaser than \mathfrak{F}_p .

The following example shows that there exists a topological space (X, \mathfrak{F}) having the condition in theorem 2 which has no σ -point finite base.

Example. Let $X_1 = \{a \mid a = \text{ordinal}, a < \Omega\} - \{\omega \cdot 1, \omega \cdot 2, \cdots, \omega \cdot n\}$, where Ω : the first uncountable ordinal, n: natural number. Choose a_1, a_2, \cdots, a_n $(a_i \neq a_i \text{ if } i \neq j)$ such that

$$X_1 \cap \{a_1, a_2, \dots, a_n\} = \phi.$$

Let $X = X_1 \cup \{a_1, a_2, \dots, a_n\}$, and

$$\mathcal{Q}_{i} = \{[i, \omega) | i < \omega\},$$

$$a_i = \{ [\omega \cdot (j-1) + i, \omega \cdot j) | 1 \le i < \omega \}; j=2, 3, \dots, n.$$

$$a'_{j} = \{A \cup \{a_{j}\} \mid A \in a_{j}\}; j=1, 2, \dots, n,$$

$$\mathfrak{L}_1 = \{ [a, \Omega) \mid (\omega \cdot \mathbf{n}) + 1 \le a < \Omega \},$$

and let $\mathfrak{L}=\mathfrak{L}_{i}\cup [\overset{n}{\bigcup_{i=1}^{n}}\boldsymbol{a}_{i}]\cup [\overset{n}{\bigcup_{i=1}^{n}}\boldsymbol{a}'_{i}]$

Let \Im be the topology on X having $\mathfrak L$ as a base. Then $\mathfrak J$ satisfies the condition in theorem 2 but \Im has no σ -point finite base.

REFERENCES

- [1] J.L. Kelley, (1955), General Topology, Van Nostrand, Princeton,
- [2] W. J. Pervin (1964), Foundations of General Topology, Academic Press, New York.
- [3] M. Sion and G. Zelmer (1967), On quasi-metrizability, *Canadian 1. of Math.*, Vol. XIX, **6.** 1234-1249
- [4] C.W. Patty (1967), bitopological Spaces, Duke Math. J., Vol. 34, 3.
- [5] S. Willard (1970), General Topology, Addison-Wesley, Reading.