On semi-stratifiable (mod K) Spaces

By Choi, Sul-young

Seoul National University, Seoul, Korea.

1. Introduction

H.R. Bennett and H.W. Martin[2] introduced the notions of various types of bases (mod K), especially first-countable(mod K) spaces and developable(mod K) spaces, motivated by Arhangel'skii[1. Theorem 22], Michael and Lutzer[7]. In [3], semi-developable (mod K) spaces are added to these two spaces. It is reasonable to consider semi-stratifiable (mod K) spaces in comparison with the spaces having usual basis.

The main results of this note are;

- (1) A semi-stratifiable (mod K) T_1 -space is a β -space.
- (2) A regular T_i -space is semi-stratifiable if and only if it is c-semistratifiable and semi-stratifiable (mod K).

Throught this note, a COC-map (countable open covering map) for a topological space X means a map g on N×X to a topology of X with $x \in g(n,x)$ and $g(n+1,x) \subset g(n,x)$ for each $n \in \mathbb{N}$ and $x \in X$.

2. Basic concepts

Definition 2.1. A topological space X is semi-stratifiable[4] if, to each open set $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of closed subsets of X such that

- $(1) \ \bigcup_{n=1}^{\infty} U_n = U,$
- (2) $U_n \subset V_n$ whenever $U \subset V$, where $\{V_n\}_{n=1}^\infty$ is a sequence assigned to an open set V.

Creede[4] has shown that a necessary and sufficient condition for a topological space X to be semi-stratifiable is that there exists a COC-map g for X such that if x is a point of X and $\{x_n\}_{n=1}^{\infty}$ is a sequence of points in X with $x \in g(n, x_n)$ for each $n \in \mathbb{N}$, then $\{x_n\}_{n=1}^{\infty}$ converges to x.

Definition 2.2. A topological space X is c-semi-stratifiable[6], if there exists a COC-map g for X such that if Λ is a closed compact subset of X and $x \in X$ -A, then there is a natural number n such that $x \notin g(n, a)$ for all $a \in \Lambda$.

Definition 2.3. A topological space X is a β -space[5] if there is a COC-map g for X such that if x is a point in X and $\{x_n\}_{n=1}^{\infty}$ is a sequence of points in X with $x \in g(n, x_n)$

for all $n \in \mathbb{N}$, then $\{x_n\}_{n=1}^{\infty}$ has a cluster point.

It is well known that every semi-stratifiable space is a c-semi-stratifiable β-space.

3, Semi-stratfiable(mod K) space.

From now on we will use the letter U to denote an open subset of a topological space.

Definition 3.1. Let X be a topological space and \mathcal{K} be a compact covering of X(a covering by compact subsets of X). A covering g of X is called a basis (mod K) [2] if

- (1) g is an open covering,
- (2) whenever $x \in K \in \mathcal{K}$ and $K \subset U$, there exists an open set G in g such that $x \in G \subset U$. In this case, X is written as the ordered triple $X = (X, \mathcal{K}, g)$.
- **Definition** 3.2. A topological space $X=(X,\mathcal{K},g)$ is first-countable (mod K) [2] if g is an open covering of X such that: For each point $x \in X$, there exists a sequence $\{G_n(x) \mid n \in \mathbb{N}\}$ in g such that if $x \in K \in \mathcal{K}$ and $K \subset U$, then $x \in G_n(x) \subset U$ for some n.

Definition 3.3. A topological space $X = (X, \mathcal{K}, g)$ is semi-developable (mod K) [3] if $g = \bigcup \{g_n | n \in \mathbb{N}\}$ where g_n is a covering of X and $g_{n+1} \propto g_n$ for all n such that

- (1) $x \in st(x, g_n)^\circ$ for all $n \in \mathbb{N}$,
- (2) if $x \in K \in \mathcal{K}$ and $K \subset U$, then $st(x, g_n) \subset U$ for some n.

We will consider another space with bases (mod K), which was introduced but unnamed [3. Lemma 4.4].

Definition 3.4. A topological space $X = (X, \mathcal{K}, g)$ is semi-stratifiable (mod K) if g is an open covering of X and there exists a COC-map g for X such that if $x \in K \in \mathcal{K}$, $K \subset U$ and $\{x_n\}_{n=1}^{\infty}$ is a sequence of points in X with $x \in g(n, x_n)$ for each n, then $\{x_n\}_{n=1}^{\infty}$ is eventually in U.

By definition it is clear that every semi-stratifiable space is semi-stratifiable (mod K).

Theorem 3.5. Every closed subspace of a semi-stratifiable $(mod\ K)$ space is semi-stratifiable $(mod\ K)$.

Proof. Let $X = (X, \mathcal{K}, g)$ be a semi-stratifiable (mod K) space. For a closed subspace Y of X, set $\mathcal{K}' = \{K \cap Y | K \in \mathcal{K}\}$ and $g' = \{G \cap Y | G \in g\}$. Then $Y = (Y, \mathcal{K}', g')$ is semi-stratifiable(mod K).

The following Theorem 3.6 is another representation of Theorem 4.5 [3].

Theorem 3.6. A topological space is semi-developable $(mod\ K)$ if and only if it is first-countable $(mod\ K)$ and semi-stratifiable $(mod\ K)$.

Theorem 3.7. Every semi-stratifiable (mod K) T_1 -space is a β -space.

Proof. Suppose g is an open covering of X and g is a COC-map satisfying the condition in Definition 3.4. We will show that; if x is a point in X and $\{x_n\}_{n=1}^{\infty}$ is a sequence of points in X with $x \in g(n, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}_{n=1}^{\infty}$ has a cluster point.

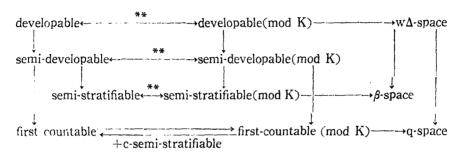
Suppose $x \in g(n, x_n)$ for all $n \in \mathbb{N}$ but $\{x_n\}_{n=1}^{\infty}$ has no cluster point. Then $\{x_n\}_{n=1}^{\infty}$ is closed

set. Consider a compact set K with $x \in K \in \mathcal{K}$. Since $K \cap \{x_n\}_{n=1}^{\infty}$ is finite, we may assume $K \cap \{x_n\}_{n=1}^{\infty} = \phi$. Hence $x \in K \subset X - \{x_n\}_{n=1}^{\infty}$. Since $X - \{x_n\}_{n=1}^{\infty}$ is open, $\{x_n\}_{n=1}^{\infty}$ is eventually in $X - \{x_n\}_{n=1}^{\infty}$. This is a contradiction.

Corollary A regular T_1 -space is semi-stratifiable if and only if it is c-semistratifiable and semi-stratifiable (mod K).

Proof. By Martin [6], a regular space is semi-stratifiable if and only if it is a c-semi-stratifiable β -space.

Combining the results in [2], [3] and this note, we obtain the following diagram.



All spaces are regular and T₁.

'A.***B' means that A is equivalent to B and c-semi-stratifiable.

REFERENCE

- 1. A V. Arhangel'skii, (1963), On a class of spaces containing all metric and all locally bicompact spaces, Sov. Math. Dokl., 4, 1051~1055.
- 2. H. R. Bennett and H. W. Martin (1975), A note on cortain spaces with bases (mod K), Can J. Math., 2 469~474.
- 3. Choi Sul-young and Kim Youn Sik, (1976), On semi-developable (mod K) spaces, J. of the Science Education Center, Seoul National Univ., 2, 77~83.
- 4. G.D. Creede, (1970), Concerning semi-stratifiable spaces, Pac. J. Math., 1, 47~54.
- 5. R.E. Hodel, (1971), Moore spaces and wΔ-space, Pac. J. Math., 38, 641~654.
- 6. H.W. Martin, (1973), Metrizability of M-spaces, Can. J. Math., 4, 840~841.
- 7. E. Michael, (1970), On Nagami's ∑-space and some related matters, *Proc. Wash. St. Univ. Conf.*, 13~18.