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Group Ring Satisfying A Polynomial Identity
BY Eung Tai, Kim

Seonl National University, Seoul, Korea

Let K [L, 2] be the polynomial ring over a field K in the noncommuting in-
determinates {;, {5, ---. An algebra E over K is said to satisfy a polynomial identity, if
there exists f(&,, &, -, C)eK&, &, -1, {#0, with

flay, o, a)=0
for all o), ay, -, a,&E.
The standard polynomial of degree »n is defined by
s, (&, ooy CO=[C0 &ooer, 8]
:;g (=D LeensCacrr *Cacm

Here s, is the symmetric group of degree n and(—1)" is 1 or —1 according as ¢ is an even

or odd permutation.

Kaplansky[2], and Amitsur{3; proved that the group ring K{G] over field K satisfies
a nontrivial polynomial identity, if the group G has an abelian subgroup with finite index
in G,

In this paper we will find a necessary and sufficient condition for K[G] to satisfy a
polynomial identity.

The following threc lemmas were proved in [1].
Lemma 1. Suppose L is an algebra over a field K which selisfies a nontrivial
polvnomial identity of degree n. Then K satisfies the polynomial identity fe K[, o, -+, 8]

with

S= ZQ LaeyCaczy " Lacm
LIS

where u,& K and they are not all zero.

Lemma 2. Let E=K, be the ring of mXm malrices over K. Then E dvoes not satisfy a
polynowmial identity of degree less than 2m.

Lemma 3. K,, the ring of mXm matrices over K, satisfies the standard polynomial
identity of degrec 2m.

We begin our study of group rings which satisfy a polynomial identity. The following
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lemma gives a sufficient condition for this to occur.

Lemma 4. Lel group G have an abelian subgroup A with (G:Al=n<oo. Then K{G|
sutispies he standard polvnomial identity of degree 2n.

Proof. Let x,,X., -, X, be a set of right coset representatives for A in G. Let
[£-=K[A] and V=K[G]. Then clearly 'V is a left E-module with basis (x,, X., -, X,}.
Now V is also a faithful right K{G]-module. Since right and left multiplication com-
mute as operators on V, it follows that K[{G] is a set of E-linear transformations on
an n-dimensional free E-module V. This K[GJ<E,=E®,K,. By Lemma 3, K, satisfies
S.,. Furthermore s., is multilincar and E is a commutative ring, so clearly E, ~E¢),K,
also satisfies s.,. Since KTG€k,, the result follows.

Now we will investigate some properties of groups and group rings.

Lemma 5. Le! [1,, H., -, Il be subgroups of a group G of finite inder. Then H
=L 0H.N--0H, has jinite index in G and in lact
[(G:H]<[G:H,][G:H,]-[G:H,) _
Proof. If Hx is a coset of H, then clearly Hx=H,xnH.xn---nH,x. Since there are at
most [G:H,1[G:H,]---[G:H,] choices for H,x, H.x, -, H,x, the result follows.

Lemma 6. Le! G be a group and let H,, [, -, H, be a pfinite number of subgroups.
Suppose that there exists a finite collection of elements x,€G (i=1,2, -, n, =1,2,+, f{))
with

G::'UY Hx,,

« sel Lheoretic union. Then for some i, [G:H,Jj<oo.

Proof. By relabeling we can assume all the 11, (o be distinct. We prove the result by
induction on n, the number of distinct H,. The case n==1 is clear.

I a full set of cosets of H, appears among the H,x,, then (G:H,]<eco and we are
finished. Otherwise if H,x is missing, then Il,,ngk’g Hx;,, But H,xnH,x,; is empty so

l,xc U Hx;. Thus

iEn, 7

H,x,, c ulx,x"'x,,

ran

and G can be written as a finitec union of cosets of i, I, -, H, By induction :G:H,]
< oo for some i=1, 2, -+, n--1 and the result follow.

I d

Lemma 7. Let G be a group and suppose that G can be written as G=UHx,, «
finite union of cosels. Then G=U Hx,; where the union is restricted to those H, with {G:11]
< oo,

Proof. Let S= {i] [G:H;J<eo} and T={i|[G:lj==0}. By Lemma 6, S¥%¢. Let W
= Frl H.. Then [G:W]<c by lemma 5 and each coset H;x;; with /€S is a finite union of
cosets of W. Thus

UHx;y= U eslix;,= UW,,



a finite union of cosets of W. If G #U’Hx,, then G » UW,, and some coset W, is missing.
Then

W,2(UW,) U (U erHix,,)
and since W,UW,, is empty we have Wvg’_gTH,-xi,.
Thus all cosets of W are contained in finite unions of cosets of 1§, with ieT. Since
'G:Wi<oo, this vields a representation of G as a finite union of cosets of those . with
7€T. This contradicts L.emma 6, and thus G— U’II;x,.

Lemma 8. fcf (r be a group wilh a cenlral subgroup Z of finite index. Then (7, the
commulator subgroup of G, is finite.

Proof. Let (x,y)=x"'y"'xy denote commutators in G. Since (x,v) '=(y,X), we see
that G’ is the set of all finite products of commutators and it is unnecessary to consider
inverses. Let X;, X, -+, X, be coset representatives for Z in G and set ¢,;=(x, x;). We
observe first that these are all the commutators of G. Let x, yeG and say x€Z., veZ..
Then x ~ux,, v=vx; with u and v central in G. This yields easily (X,y)=(x, v)=c,.

Now let x,yeG. Since Z is normal in G and G/Z has order n, we have (x,y)"eZ.
Thus

&9 =Xy TRy (x, V)"
=Xy 'x(x, )"y
=Xy XY Xy (%, "y
=Xy Iyt y T (%, Y)Y
=Xy 'xy, "
since conjugation by y being an automorphism of G implies that
y' YT y=(y iRy, yTlyw)"!
‘ =Xy, YL
We show finally that every element of G’ can be write as a product of at most n®
commutators and this will yvield the result. Suppose ueG’ and u==c,c,-c,, a product
of m commutators. If m>n® then since there at most n® distinct ¢;;, it follows that some
Cij, say c=(x,y), occurs at least n+1 times. We shift n+1 of these successively to the
left using v
(X, XJ(X, ¥)==(x, ¥)c7! (%, X)¢
, =(x,y)(c'xe c'xe)
and obtain u=(x,y)" 'c/,. ¢/ 4.s--c’,, where ¢, is u possibly new commutator. Using
XV =X YO TRy, V)T
we can write u as a product of m—]1 commutators. Thus every element of G’ is a
product of at most n® of ¢, and thus clearly G’ is finite,

Let G be a group. We define
A=AG) = xixeG, G:C.(xX))v w}.
Since the conjugates of x are in one-to-one correspondence with the right cosets of
C.(x>, it follows that x has only finitelv many conjugates if and only if x€A, anu A is
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a normal subgroup of G.
Let 6 denote the projection §:K[G]—K[A] given by
a=Nkx—-0(a@)=2 kX
*=G x=d

Then ¢ is clearly a K-linear map but it is certainly not a ring homomorphism in general.

Lemma 9. Let H be a finitely generated subgroup of A(G). Then [H:Z(H)] and |H’|
are finite. Thus if A(G) contains no nonidentily elements of finite order, then A(G) Is
torsion free abelian.

Proof. Let H be generated by x,, X., -, X,. Since each x; has only a finite number of
conjugates in G, they have only a finite number of conjugates in H. Hence [H:Cy(x,)] < co.
By Lemma 5, Z=nC,(x;) has finite index in H. Since x,, X,, -*+, X, generates H, we see
that Z is central in H. Thus [H:Z(H)] is finite and by Lemma 8, H’ is finite. Now
suppose A(G) has no nontrival elements of finite order and let %, y€A(G). Set H= <x,y>.
Since H is finitely generated subgroup of A(G), the above implies that H’ is finite and
hence H’= <1>. Thus x and v commute and A(G) is abelian. By definition A(G) is
torsion free.

Lemma 10. Let G*UH, g,, a finite union of cosets. Let a), as >, a, BB, 5€
K[G} and suppose that for all xeG—UH,g,, we have
axpr+axf,+ - FaxB,=0
Then there exists yeG with
6 B+ 60(ar)’ fat+8(a)’ B,=0
Poof. Let W be the intersection of the centralizers of all the elements in Supp (a.)
for all i=1,2,-,s. By Lemma 5, (G: W)=t<w. Clearly if x&W, then x centralizes
0(a), 0(a), -, 0(a,). Let {u} be asetof right coset representatives for W in G. Let us
suppose by way of contradiction that for j=1,2,, --{,
ri=60(a,)*p, +6(a)* B4+ +0(a)*B,+#0
and let v;eSupp 7,
Write a;=0(a;)+a,/ where Supp a;’NA=¢ and then write the finite sums
af/=XYa,y, V€A
Bi=Lbuz,
with a;, bseK and y,, z.€G. If y; is conjugate to come viz,”" in G, choose h;, &G with
hi yvhia=v.z,™ .
Let xeG and suppose that x¢H,g,.- Then we must have
O=x"aXf +X"'a:XBp+- +X "', X8,
=(6(a) r+0(ar) fot+ - +8(a) B+ (& Bt a "Bt +a 8]
Since {u} is a full set of coset representives for W in G, we have xeWu, for some 7.
Since W centralizes 8(a,), 8(ay), -+, (a,), the first expression above is equal to 7. Hence
0:7,-+[al"ﬂ,+a2”ﬁz+t--+as"19,]
Now v, occurs in the support of 7, and so this element must be canceled by something from



the second term. Thus there exists y;, 2z, with v,=y%z, or x™'y,x=v,z;'=h; y;h;,. Thus
xeC(yNh;i. We have therefore shown that

G=(UH,gn) U (UCs(yDhiin),
a finite union of cosets. Now v;&4 so (G : G(y)J=0c Since by Lemma 7 we can delete
subgroups of infinite index from the above union, we have G=UH,g.,. a contradiction.
The lemma is proved.

Let K&, Ly, ++-3 be the polynomial ring over K in the noncommuting indeterminates
&, Ly, - A linear monomial is an element peK({,, &, -] of the form p=G:fi--Li with
all ; distinet and with »:-1. Thus g is linear in each variable,

Lemma 11. The number of linear monomials in K({,, 8, -+, L) s less than or equal to
(m+D!.

Proof. The number of linear monomials in K (&, {;-, &,) of degree m is of course
m!. Now any other linear monomial is clearly just an initial segment of one of these.
This yields the bound m-m!< (m+1)1

Lemma. 12. Let K(G) satisfy a nontriviel polynomial identily of degree n. Then
[G:A)znl.

Proof. We assume by way of contradiction that (G : Al>n!. By Lemma 1 we may
assume that K7G> satisfies the polynomial identity.

1, Ly e G =888, +u§s"aac-(ngu(2)“‘§u(n)

¢ #1

so that clearly n»1. For j=1,2, -, n define {,€K{¢;, &y L) by

f=r0 .. f;7-terms not starting with {.8Cune
Then clearly {,=f, [,=Z,, and f; is a homogeneous multilincar polynomial of degree
n—j+1. In particular, for all j, ¢ occurs in each monomial of f;, We clearly have

f;=¢f,,,--terms not starting with ;.
For j==2, 3,1, let M, denote the set of all linear monomials in K(g;, {4, -0+, 5] and let
M, be empty. Then by Lemma 11 we have for all j. |M;| <|M,| <n!. We show now by
induction on j=1,2, -, 1 that for any xj, X;41, -, X,€G, then either {;(X;, X4y, - X)=0o0r
1#(X;, X410, XD EA for some peM;. Since f=f, is a polynomial identity satisfied by K{G),
the result for j=1 is clear.

Suppose the result holds for some j <n. Fix X;,1, Xj42 - X,€G and let xeG play the
role of the j* variable. Let ueMj,.. If p(Xj.1, Xj10 o+ X) €4, we are done. Thus we
may assume that p(Xj.u, Xiun - X,) €4, for all p&M;,,. Set M;—M;.,=T;. Now let p&T;
so that g involves the variable £, Write g=p/(;u” where g and p” are monomials in
KiCrin Ciazy oo 5. Then p(X, Xsany Xjsz o+ X €A if and only if

X& g (Xyp1, 04 Xa) "By (Xjar, 0y X,) "' =4h,

a fixed coset of A, since ¢’ and p” do not involve {; and since A is normal in G. Thus it



follows that for all xeG—~UTAhﬂ, we have p(X, Xjur -, X,)€A for all geM,, since
=T

M;cM;,,UT;. Since the inductive result holds for j, we conclude that for all xeG—
UTAh,, we have {;(x, x;,,, -*-, X,)=0. Note that |T;| <|M;|<n! and (G : A)>n! by assump-

Ty

tion, so G——F gT,Ah" is nonempty. Write

1,85 Cianyreny G =8, ferZr 7. Cip’
where z,, 3" €K({:.1, v =€) and 5, is a linear monomial. Hence »,€M;,.. Now by
the above we have

0=1-x£71(Xsy 5 XD+ B9 (Ksany w0y Xad X, (i, -0 X0

for all XEG“,;#,A“”‘¢' Hence by Lemma 10 there exists yeG with

0=0(DYist(Xjrsy sy Xn) + PNUICACTRIAE Wi MACIRLDS HH
Clearly 6(1)’=1. Also 9,(X;1, - %) €G~A since 7,€M;,, and hence 6(5,(x;.1, - X))
=(0. Thus

() QG FTC SRR SES N6 RS &)
and the induction step is proved. In particular. the inductive result holds for j:-. Here
f,(£)=¢, and M,=={,}. Thus we conclude that for all x=G either x=0 or x€A, a
contradiction since C-*\- A. Therefore the assumptiion that (G:A)>n! is falsc and the
lemma is proved.

Theorem. Lel G be a group, and let A be finilelv genevaled. Then the group ring K],
over field K satisfies a polynomial identity over K if and only if (G : A} < cc.

Proof. If K{(G] satisfies a polynomial identity, then{G : A< o> by Lemma 12.

Conversely, suppose that (G : A}J<co. Then by Lemma 9, (A : Z(A) I << e and [G : Z(AY)=
(G :AMA: Z(A)) < oo, Hence Z(A) is an abelian group of finite index in G. Therefore
K(G] satisfies a polynomial identity by Lemma 4.
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