Group Ring Satisfying A Polynomial Identity BY Eung Tai, Kim

Seoul National University, Seoul, Korea

Let $K[\zeta_1, \zeta_2, \cdots]$ be the polynomial ring over a field K in the noncommuting indeterminates ζ_1, ζ_2, \cdots . An algebra E over K is said to satisfy a polynomial identity, if there exists $f(\zeta_1, \zeta_2, \cdots, \zeta_n) \in K[\zeta_1, \zeta_2, \cdots]$, $f \neq 0$, with

$$f(\alpha_1, \alpha_2, \dots, \alpha_n) = 0$$

for all $\alpha_1, \alpha_2, \dots, \alpha_n \in E$.

The standard polynomial of degree n is defined by

$$\mathbf{S}_{n}(\zeta_{1}, \zeta_{2}, \dots, \zeta_{n}) = [\zeta_{1}, \zeta_{2}, \dots, \zeta_{n}]$$

$$= \sum_{n \in \mathbb{S}_{+}} (-1)^{n} \zeta_{n(1)} \zeta_{n(2)} \dots \zeta_{n(n)}$$

Here s_* is the symmetric group of degree n and $(-1)^*$ is 1 or -1 according as σ is an even or odd permutation.

Kaplansky[2], and Amitsur[3] proved that the group ring K[G] over field K satisfies a nontrivial polynomial identity, if the group G has an abelian subgroup with finite index in G.

In this paper we will find a necessary and sufficient condition for K[G] to satisfy a polynomial identity.

The following three lemmas were proved in [1].

Lemma 1. Suppose E is an algebra over a field K which satisfies a nontrivial polynomial identity of degree n. Then E satisfies the polynomial identity $f \in K[\zeta_1, \zeta_2, \dots, \zeta_n]$ with

$$f = \sum_{\alpha \in S_n} a_{\alpha} \zeta_{\alpha(1)} \zeta_{\alpha(2)} \cdots \zeta_{\alpha(n)}$$

where $u \in K$ and they are not all zero.

Lemma 2. Let $E=K_m$ be the ring of $m \times m$ matrices over K. Then E does not satisfy a polynomial identity of degree less than 2m.

Lemma 3. K_m , the ring of $m \times m$ matrices over K, satisfies the standard polynomial identity of degree 2m.

We begin our study of group rings which satisfy a polynomial identity. The following

lemma gives a sufficient condition for this to occur.

Lemma 4. Let group G have an abelian subgroup A with $[G:A]=n<\infty$. Then K[G] satisfies the standard polynomial identity of degree 2n.

Proof. Let x_1, x_2, \dots, x_n be a set of right coset representatives for A in G. Let E = K[A] and V = K[G]. Then clearly V is a left E-module with basis $\{x_1, x_2, \dots, x_n\}$. Now V is also a faithful right K[G]-module. Since right and left multiplication commute as operators on V, it follows that K[G] is a set of E-linear transformations on an n-dimensional free E-module V. This $K[G] \subseteq E_n = E \bigotimes_n K_n$. By Lemma 3, K_n satisfies s_{2n} . Furthermore s_{2n} is multilinear and E is a commutative ring, so clearly $E_n = E \bigotimes_n K_n$ also satisfies s_{2n} . Since $K[G] \subseteq E_n$, the result follows.

Now we will investigate some properties of groups and group rings.

Lemma 5. Let H_1 , H_2 , ..., H_n be subgroups of a group G of finite index. Then $H = H_1 \cap H_2 \cap \cdots \cap H_n$ has finite index in G and in fact

$$[G:H] \leq [G:H_1][G:H_2]\cdots [G:H_n]$$

Proof. If Hx is a coset of H, then clearly $Hx = H_1x \cap H_2x \cap \cdots \cap H_nx$. Since there are at most $[G:H_1][G:H_2]\cdots[G:H_n]$ choices for H_1x , H_2x , \cdots , H_nx , the result follows.

Lemma 6. Let G be a group and let H_1 , H_2 , ..., H_n be a finite number of subgroups. Suppose that there exists a finite collection of elements $x_{ij} \in G$ (i=1, 2, ..., n, j=1, 2, ..., f(i)) with

$$G = \bigcup_{i=1}^{n} H_i x_{ij}$$

a set theoretic union. Then for some i, $[G:H_i] < \infty$.

Proof. By relabeling we can assume all the H_i to be distinct. We prove the result by induction on n, the number of distinct H_i . The case n=1 is clear.

If a full set of cosets of H_n appears among the $H_n x_{n_i}$, then $\{G: H_n\} < \infty$ and we are finished. Otherwise if $H_n x$ is missing, then $H_n x \subseteq \bigcup_{i \neq n_{i,j}} H_i x_{ij}$, But $H_n x \cap H_n x_{nj}$ is empty so $H_n x \subseteq \bigcup_{i \neq n_{i,j}} H_i x_{ij}$. Thus

$$H_n \mathbf{X}_n \subseteq \bigcup_{i \in n, j} H_i \mathbf{X}_{ij} \mathbf{X}^{-1} \mathbf{X}_n$$

and G can be written as a finite union of cosets of H_i , H_2 , ..., H_{ni} By induction $\{G: H_i\}$ $<\infty$ for some i=1,2,..., n-1 and the result follow.

Lemma 7. Let G be a group and suppose that G can be written as $G = \bigcup H_i x_{ij}$, a finite union of cosets. Then $G = \bigcup H_i x_{ij}$ where the union is restricted to those H_i with $[G:H_i] < \infty$.

Proof. Let $S = \{i \mid [G:H_i] < \infty\}$ and $T = \{i \mid [G:H_i] = \infty\}$. By Lemma 6, $S \neq \phi$. Let $W = \bigcap_{i \in S} H_i$. Then $[G:W] < \infty$ by lemma 5 and each coset $H_i x_{ij}$ with $i \in S$ is a finite union of cosets of W. Thus

$$\bigcup' H_i \mathbf{x}_{ij} = \bigcup_{i \in \mathbf{S}} H_i \mathbf{x}_{ij} = \bigcup \mathbf{W}_{\mathbf{y}_*}$$

a finite union of cosets of W. If $G \neq \bigcup 'H_i x_i$, then $G \neq \bigcup W_x$, and some coset W_x is missing. Then

$$W_{y}\subseteq (\cup W_{y_{i}})\cup (\cup_{i\in T}H_{i}X_{i,i})$$

and since $W_v \cup W_v$, is empty we have $W_v \subseteq \bigcup_{i \in T} H_i X_{ij}$.

Thus all cosets of W are contained in finite unions of cosets of H_i with $i \in T$. Since $(G:W) < \infty$, this yields a representation of G as a finite union of cosets of those H_i with $i \in T$. This contradicts Lemma 6, and thus $G = \bigcup H_i x_i$.

Lemma 8. Let G be a group with a central subgroup Z of finite index. Then G', the commutator subgroup of G, is finite.

Proof. Let $(x, y) = x^{-1}y^{-1}xy$ denote commutators in G. Since $(x, y)^{-1} = (y, x)$, we see that G' is the set of all finite products of commutators and it is unnecessary to consider inverses. Let x_1, x_2, \dots, x_n be coset representatives for Z in G and set $c_{ij} = (x_i, x_j)$. We observe first that these are all the commutators of G. Let $x_i, y \in G$ and say $x \in Z_x, y \in Z_x$. Then $x = ux_i, y = vx_j$ with u and v central in G. This yields easily $(x, y) = (x_i, y_j) = c_{ij}$.

Now let $x, y \in G$. Since Z is normal in G and G/Z has order n, we have $(x, y)^n \in Z$. Thus

$$(x, y)^{n-1} = x^{-1}y^{-1}xy(x, y)^{n}$$

$$= x^{-1}y^{-1}x(x, y)^{n}y$$

$$= x^{-1}y^{-1}x(x^{-1}y^{-1}xy)(x, y)^{n-1}y$$

$$= x^{-1}y^{-2}xy^{2} \cdot y^{-1}(x, y)^{n-1}y$$

$$= (x, y^{2})(y^{-1}xy, y)^{n-1}$$

since conjugation by y being an automorphism of G implies that

$$y^{-1}(x, y)^{n-1} y = (y^{-1}xy, y^{-1}yy)^{n-1}$$

= $(y^{-1}xy, y)^{n-1}$.

We show finally that every element of G' can be write as a product of at most n^3 commutators and this will yield the result. Suppose $u \in G'$ and $u = c_1 c_2 \cdots c_m$, a product of m commutators. If $m > n^3$, then since there at most n^2 distinct c_{ij} , it follows that some c_{ij} , say c = (x, y), occurs at least n+1 times. We shift n+1 of these successively to the left using

$$(x_1, x_2)(x_1, y) = (x_1, y)c^{-1}(x_2, x_3)c$$

= $(x_1, y)(c^{-1}x_1, c_1, c^{-1}x_2, c_2)$

and obtain $\mathbf{u} = (\mathbf{x}, \mathbf{y})^{n-1} \mathbf{c'}_{n-1} \mathbf{c'}_{n+3} \cdots \mathbf{c'}_{n}$ where $\mathbf{c'}_i$ is a possibly new commutator. Using $(\mathbf{x}, \mathbf{y})^{n+1} = (\mathbf{x}, \mathbf{y}^2) (\mathbf{y}^{-1} \mathbf{x} \mathbf{y}, \mathbf{y})^{n-1}$

we can write u as a product of m-1 commutators. Thus every element of G' is a product of at most n^3 of c_{ij} and thus clearly G' is finite.

Let G be a group. We define

$$\Delta := \Delta(G) = \{x \mid x \in G, [G:C_{\alpha}(x)] < \infty\}.$$

Since the conjugates of x are in one-to-one correspondence with the right cosets of $C_c(x)$, it follows that x has only finitely many conjugates if and only if $x \in \Delta$, and Δ is

a normal subgroup of G.

Let θ denote the projection $\theta: K[G] \to K[\Delta]$ given by

$$\alpha = \sum_{x \in G} k_x x \rightarrow \theta(\alpha) = \sum_{x \in J} k_x x$$

Then θ is clearly a K-linear map but it is certainly not a ring homomorphism in general.

Lemma 9. Let H be a finitely generated subgroup of $\Delta(G)$. Then [H:Z(H)] and |H'|are finite. Thus if $\Delta(G)$ contains no nonidentity elements of finite order, then $\Delta(G)$ is torsion free abelian.

Proof. Let H be generated by x_1, x_2, \dots, x_n . Since each x_i has only a finite number of conjugates in G, they have only a finite number of conjugates in H. Hence $[H:C_H(x_i)] < \infty$. By Lemma 5, $Z = \bigcap C_H(x_i)$ has finite index in H. Since x_1, x_2, \dots, x_n generates H, we see that Z is central in H. Thus [H:Z(H)] is finite and by Lemma 8, H' is finite. Now suppose $\Delta(G)$ has no nontrival elements of finite order and let x, $y \in \Delta(G)$. Set $H = \langle x, y \rangle$. Since H is finitely generated subgroup of $\Delta(G)$, the above implies that H' is finite and hence $H' = \langle 1 \rangle$. Thus x and y commute and $\Delta(G)$ is abelian. By definition $\Delta(G)$ is torsion free.

Lemma 10. Let $G \neq \bigcup H_m g_{mn}$, a finite union of cosets. Let $\alpha_1, \alpha_2, \dots, \alpha_s$, $\beta_1, \beta_2, \dots, \beta_s \in$ K[G] and suppose that for all $x \in G - \bigcup H_m g_{mn}$ we have

$$\alpha_1 x \beta_1 + \alpha_2 x \beta_2 + \cdots + \alpha_s x \beta_s = 0$$

Then there exists $y \in G$ with

$$\theta(\alpha_1)^{\flat}\beta_1 + \theta(\alpha_2)^{\flat}\beta_2 + \cdots + \theta(\alpha_s)^{\flat}\beta_s = 0$$

Poof. Let W be the intersection of the centralizers of all the elements in Supp $\theta(\alpha_i)$ for all $i=1,2,\cdots$, s. By Lemma 5, $(G:W)=t<\infty$. Clearly if $x\in W$, then x centralizes $\theta(\alpha_1), \theta(\alpha_2), \dots, \theta(\alpha_r)$. Let $\{u_i\}$ be a set of right coset representatives for W in G. Let us suppose by way of contradiction that for $j=1, 2, \dots t$,

$$\gamma_i = \theta(\alpha_1)^{u_i}\beta_1 + \theta(\alpha_2)^{u_i}\beta_2 + \cdots + \theta(\alpha_s)^{u_i}\beta_s \neq 0$$

and let $v_i \in \text{Supp } \gamma_i$

Write $\alpha_i = \theta(\alpha_i) + \alpha_i'$ where Supp $\alpha_i' \cap \Delta = \phi$ and then write the finite sums

$$\alpha_j' = \sum a_{jk} y_k \quad y_k \notin \Delta$$
$$\beta_j = \sum b_{jk} z_k$$

with $a_{ik}, b_{jk} \in K$ and $y_k, z_k \in G$. If y_i is conjugate to come $v_i z_k^{-1}$ in G, choose $h_{ijk} \in G$ with $h_{ijk}^{-1} y_j h_{ijk} = v_i z_k^{-1}$

Let $x \in G$ and suppose that $x \notin H_m g_m$. Then we must have

$$O = x^{-1}\alpha_1 x \beta_1 + x^{-1}\alpha_2 x \beta_2 + \dots + x^{-1}\alpha_s x \beta,$$

= $(\theta(\alpha_1)^x \beta_1 + \theta(\alpha_2)^x \beta_2 + \dots + \theta(\alpha_s)^x \beta_s) + (\alpha'_1 \beta_1 + \alpha_2^{-x} \beta_2 + \dots + \alpha_s'^x \beta_s)$

Since $\{u_i\}$ is a full set of coset representives for W in G, we have $x \in Wu$, for some i. Since W centralizes $\theta(\alpha_1)$, $\theta(\alpha_2)$, ..., $\theta(\alpha_s)$, the first expression above is equal to γ_i . Hence $0 = \gamma_i + (\alpha_1'^x \beta_1 + \alpha_2'^x \beta_2 + \dots + \alpha_s'^x \beta_s)$

Now v_i occurs in the support of γ_i and so this element must be canceled by something from

the second term. Thus there exists y_i , z_k with $v_i = y_j^x z_k$ or $x^{-1}y_j x = v_i z_k^{-1} = h_{ijk}^{-1} y_j h_{ijk}$. Thus $x \in C_g(y_j)h_{ijk}$. We have therefore shown that

$$G = (\bigcup H_m g_{mn}) \bigcup (\bigcup C_G(y_i) h_{ijk}),$$

a finite union of cosets. Now $y \notin A$ so $(G : G_c(y_j)) = \infty$ Since by Lemma 7 we can delete subgroups of infinite index from the above union, we have $G = \bigcup H_m g_{mn}$, a contradiction. The lemma is proved.

Let $K(\zeta_1, \zeta_2, \cdots)$ be the polynomial ring over K in the noncommuting indeterminates ζ_1, ζ_2, \cdots . A linear monomial is an element $\mu \in K(\zeta_1, \zeta_2, \cdots)$ of the form $\mu = \zeta_{i_1} \zeta_{i_2} \cdots \zeta_{i_r}$ with all i_j distinct and with $r \ge 1$. Thus μ is linear in each variable,

Lemma 11. The number of linear monomials in $K(\zeta_1, \zeta_2, \dots, \zeta_m)$ is less than or equal to (m+1)!.

Proof. The number of linear monomials in $K(\zeta_1, \zeta_2, \dots, \zeta_m)$ of degree m is of course m!. Now any other linear monomial is clearly just an initial segment of one of these. This yields the bound $m \cdot m! \le (m+1)!$.

Lemma. 12. Let K(G) satisfy a nontrivial polynomial identity of degree n. Then $[G:\Delta] \le n!$.

Proof. We assume by way of contradiction that $(G : \Delta) > n!$. By Lemma 1 we may assume that K(G) satisfies the polynomial identity.

$$f(\zeta_1, \zeta_2, \dots, \zeta_n) = \zeta_1 \zeta_2 \dots \zeta_n + \sum_{\alpha \in S_n} a_{\alpha} \zeta_{\sigma(1)} \zeta_{\sigma(2)} \dots \zeta_{\sigma(n)}$$

so that clearly n>1. For $j=1,2,\cdots,n$ define $f_i \in K(\zeta_i,\zeta_{i+1},\cdots,\zeta_n)$ by

 $f = \zeta_1 \zeta_2 \cdots \zeta_{j-1} f_j + \text{terms not starting with } \zeta_1 \zeta_2 \cdots \zeta_{j+1}$.

Then clearly $f_i = f$, $f_n = \zeta_i$, and f_i is a homogeneous multilinear polynomial of degree n-j+1. In particular, for all j, ζ_i occurs in each monomial of f_i . We clearly have

$$f_i = \zeta_i f_{i+1} + \text{terms not starting with } \zeta_i$$
.

For $j=2,3,\cdots n$, let M_j denote the set of all linear monomials in $K(\zeta_j,\zeta_{j+1},\cdots,\zeta_n)$ and let M_1 be empty. Then by Lemma 11 we have for all j. $|M_j| \le |M_2| \le n!$. We show now by induction on $j=1,2,\cdots,n$ that for any $x_j,x_{j+1},\cdots,x_n \in G$, then either $f_j(x_j,x_{j+1},\cdots,x_n)=0$ or $\mu(x_j,x_{j+1},\cdots x_n)\in \Delta$ for some $\mu\in M_j$. Since $f=f_1$ is a polynomial identity satisfied by K(G), the result for j=1 is clear.

Suppose the result holds for some j < n. Fix $x_{j+1}, x_{j+2}, \dots, x_n \in G$ and let $x \in G$ play the role of the j^{th} variable. Let $u \in M_{j+1}$. If $\mu(x_{j+1}, x_{j+2}, \dots, x_n) \in \Delta$, we are done. Thus we may assume that $\mu(x_{j+1}, x_{j+2}, \dots, x_n) \notin \Delta$, for all $\mu \notin M_{j+1}$. Set $M_j - M_{j+1} = T_j$. Now let $\mu \in T_j$ so that μ involves the variable ζ_j . Write $\mu = \mu' \zeta_j \mu''$ where μ' and μ'' are monomials in $K(\zeta_{j+1}, \zeta_{j+2}, \dots, \zeta_n)$. Then $\mu(x_j, x_{j+1}, x_{j+2}, \dots, x_n) \in \Delta$ if and only if

$$\mathbf{x} \in \mu'(\mathbf{x}_{i+1}, \dots, \mathbf{x}_n)^{-1} \Delta \mu''(\mathbf{x}_{i+1}, \dots, \mathbf{x}_n)^{-1} = \Delta \mathbf{h}_{\mu}$$

a fixed coset of Δ , since μ' and μ'' do not involve ζ_i and since Δ is normal in G. Thus it

follows that for all $x \in G - \bigcup_{\mu \in T_j} \Delta h_\mu$, we have $\mu(x, x_{j+1}, \dots, x_n) \notin \Delta$ for all $\mu \in M_j$, since $M_j \subseteq M_{j+1} \cup T_j$. Since the inductive result holds for j, we conclude that for all $x \in G - \bigcup_{\mu \in T_j} \Delta h_\mu$ we have $f_j(x, x_{j+1}, \dots, x_n) = 0$. Note that $|T_j| \le |M_j| \le n!$ and $(G : \Delta) > n!$ by assumption, so $G - \bigcup_{\mu \in T_j} \Delta h_\mu$ is nonempty. Write

$$f_j(\zeta_j, \zeta_{j+1}, \dots, \zeta_n) = \zeta_r f_{j+1} + \sum_i \eta_r \zeta_j \eta_r'$$

where η_r , $\eta_r' \in K(\zeta_{j+1}, \zeta_{j+2}, \dots \zeta_n)$ and η_r is a linear monomial. Hence $\eta_r \in M_{i+1}$. Now by the above we have

$$0 = 1 \cdot x \cdot f_{j+1}(x_{j+1}, \dots, x_n) + \sum_{i} \eta_r(x_{j+1}, \dots, x_n) \cdot x \cdot \eta_r'(x_{j+1}, \dots, x_n)$$

for all $x \in G - \bigcup_{g \in T} \Delta h_g \neq \phi$. Hence by Lemma 10 there exists $y \in G$ with

$$0 = \theta(1)y_{j+1}(x_{j+1}, \dots, x_n) + \sum \theta(\eta_r(x_{j+1}, \dots, x_n)^y \eta_r'(x_{j+1}, \dots, x_n),$$

Clearly $\theta(1)^{r}=1$. Also $\eta_{r}(\mathbf{x}_{j+1}, \dots, \mathbf{x}_{n}) \in \mathbf{G}-\Delta$ since $\eta_{r} \in \mathbf{M}_{j+1}$ and hence $\theta(\eta_{r}(\mathbf{x}_{j+1}, \dots, \mathbf{x}_{n}))$ =0. Thus

$$0=1\cdot f_{j+1}(x_{j+1},\cdots,x_n)=f_{j+1}(x_{j+1},\cdots,x_n)$$

and the induction step is proved. In particular, the inductive result holds for jew. Here $f_n(\zeta_n) = \zeta_n$ and $M_n = \{\zeta_n\}$. Thus we conclude that for all $x \in G$ either x = 0 or $x \in \Delta$, a contradiction since $G \not\sim \Delta$. Therefore the assumption that $(G : \Delta) > n!$ is false and the lemma is proved.

Theorem. Let G be a group, and let Δ be finitely generated. Then the group ring K(G) over field K satisfies a polynomial identity over K if and only if $\{G: \Delta\} < \infty$.

Proof. If K(G) satisfies a polynomial identity, then $(G : \Delta) < \infty$ by Lemma 12.

Conversely, suppose that $(G : \Delta) < \infty$. Then by Lemma 9, $(\Delta : Z(\Delta)) < \infty$ and $(G : Z(\Delta)) = (G : \Delta)(\Delta : Z(\Delta)) < \infty$. Hence $Z(\Delta)$ is an abelian group of finite index in G. Therefore K(G) satisfies a polynomial identity by Lemma 4.

REFERENCES

- (1) Amitsur, S. A., and Levitzki, J., (1950), Minimal identities for algebras. *Proc. Amer. Math. Soc.* 1, 449-463
- (2) Kaplansky, I., (1949), Groups with representations of bounded degree. Canad. J. Math., 1, 105-112
- (3) Amitsur, S. A., (1961), Groups with representations of bounded degree II. *Illinois J. Math.* 5, 198-205
- [4] Passman, D.S., (1971), Infinite group rings. Marcel Dekker Inc.