니트로벤젠의 전해환원 반응 조건과 메카니즘

Reaction Conditions and Mechanism of Electrolytic Reduction of Nitrobenzene

  • 천정균 (서강대학교 이공대학 화학과) ;
  • 백운기 (서강대학교 이공대학 화학과)
  • 발행 : 1977.12.30

초록

에탄올-물 혼합용매에서 납전극을 사용하여 니트로벤젠(${\phi}NO_2$)과 그 유도체의 전해 환원반응을 조사하였다. 산성용액에서는 퍼텐셜에 따라 ${\phi}NHOH\;및\;{\phi}NH_2$가 생성되었으며 니트로벤젠(${\phi}NO$)은 중간체가 아닌것으로 보였다. 염기성 용액에서는 ${\phi}NO$가 생성되며 더 낮은 퍼텐셜에서 환원시키면 ${\phi}N=N{\phi}$ 등 짝지어진 화합물이 생성됨을 확인하였다. 사용한 전해질 용액에서 ${\phi}NO\;와\;{\phi}NHOH$ 사이에 화학적인 짝지음 반응(coupling reaction)은 일어나지 않았다. 각각의 반응에 대해 전류-전압관계와 pH 의존도 및 반응물질에대한 반응 차수로부터 반응 메카니즘을 도출하였다. ${\phi}NO$가 생성되는 반응은 치환기가 있을 때도 같은 메카니즘을 따르는 것으로 보인다.

Electrochemical reduction of nitrobenzene (${\phi}NO_2$) and its derivatives on Pb electrode was studied by means of galvanostatic measurements and coulometric electrolysis in ethanol-water solvent. In acidic solutions phenylhydroxyl amine and aniline ethanol-water solvent. In acidic solutions phenylhydroxyl amine and aniline were produced while nitrosobenzene and coupled products such as azo-and hydrazobenzene were produced in basic solutions. Nitrosobenzene (${\phi}NO$) was not found to be an intermediate in the reduction reactions of ${\phi}NO_2$ in acidic solutions. No direct coupling between ${\phi}NO\;and\;{\phi}NHOH$ was observed to occur in the electrolyte solutions used. Mechanisms of the production of phenylhydroxylamine and nitrosobenzene are deduced from Tafel slope, pH dependence and reaction order with respect to nitrobenzene. Mechanism for the reduction of substituted nitrobenzenes seems to be identical to that of nitrobenzene.

키워드

참고문헌

  1. Chem. Revs. v.62 F. D. Popp;H. P. Schultz
  2. J. Amer. Chem. Soc. v.65 J. J. Lingane;C. G. Swain;M. Fields
  3. J. Amer. Chem. Soc. v.74 G. B. Diamond;M. D. Soffer
  4. J. Amer. Chem. Soc. v.85 S. R. Missan;E. I. Becker;L. Meites
  5. J. Electrochem. Soc. v.112 T. Sekine;A. Yamura;K. Sugino
  6. Electrochim. Acta v.12 M. M. Baizer;J. D. Anderson;J. H. Wagenknecht
  7. Z. C. Electrochim. v.22 F. Harber
  8. Z. Phys. Chem. v.32 F. Harber;C. Schmindt
  9. Organic Polarognaphy P. Zuman;C. L. Perrin
  10. Synthetic Organic Electrochemistry A. J. Fry
  11. J. Electroanal. Chem. v.23 S. K. Vijayalkshamma;R. S. Subrahmanya
  12. Elecirochim. Acta v.17 H. Sadek;B. A. Abd-El-Naby
  13. Electrochim. Acta v.9 Kastening
  14. Anal. Chem. v.36 L. Chuang;I. Fried;P. J. Eiving
  15. Electrochim. Acta v.17 S. K. Vijayalkshamma;R. S. Subrahmany
  16. J. Amer. Chem. Soc. v.97 W. H. Smith;A. J. Bard
  17. Proc. 1st. Australian Conference on Electrochemistry G. H. Fleischman;I. N. Petrov;W. F. K. Wynne-Jones
  18. J. Amer. Chem. Soc. v.87 G. A. Russell;E. J. Geels
  19. J. Korean Chem. Soc. v.20 I. K. Kim;J. Whang
  20. Anal. Chem. v.34 L. H. Piette;P. Ludwig;R. N. Adams
  21. J. Amer. Chem. Soc. v.84 L. H. Piette;P. Ludwig;R. N. Adams
  22. J. Amer. Chem. Soc. v.86 P. Ludwig;T. Layloff;R. N. Adams
  23. J. Chem. Soc. (B) P. B. Ayscough;F. P. Sargent;R. Wilson
  24. J. Amer. Chem. Soc. v.82 D. H. Geske;A. H. Marki
  25. Textbook of Practical Organic Chemistry A. I. Vogel
  26. Coll. v.I Organic Synthesis E. C. Hornig
  27. Coll. v.III Organic Synthesis E. C. Hornig
  28. Modern Electroplating H. J. Wisner;F. A. Lowenheim(ed.)
  29. Proc. of the International Conference on Tropical Oceanography T. N. Andersen;B. A. Miner;E. Dibble;H. Eyring
  30. J. Korean Chem. Soc. v.18 J. Chon;W. Paik
  31. Organic Electronic Spertal Data v.II H. E. Ungnade
  32. J. Electrcanal. Chem. v.26 M. Heyrovsky;S. Vavricka;L. Holleck;B. Kastening
  33. J. Royal Neth. Chem. Soc. v.90 J. A. J. Vink;J. Cornelisse;E. Havinga
  34. Tetrahedron Letters W. C. Peterson;R. L. Letsinger
  35. Electrochim. Acta v.17 S. Sadek;B.A. Abd-El-Naby
  36. J. Electrochem. Soc. v.111 J. O´M. Bockris;D. A. J. Swinkels
  37. J. Electrochem. Soc. v.111 J. O´M. Bockris;M. Green;D. A. J. Swinkels
  38. J. Phys. Chem. v.65 E. Blomgren;J. O´M. Boekris;C. Jesch