Abstract
The authors' theory developed in the preceding Paper 1 was applied to plastic deformation of ceramics, metals, alloys and single crystals. For polycrystalline substances, the flow mechanisms due to dislocation movement and grain boundary movement appear together or separately according to the experimental conditions whereas for single crystals, only the mechanism of dislocation movement appears. The parameters appearing in the flow equations $({\alpha}_{d1},\;1/{\beta}_{d1})and\;({\alpha}_{gj}/X_{gj},\;1/{\beta}_{gj})$ (j = 1 or 2), and the activation enthalpies ${\Delta}H_{k1}^{\neq}$ (k = d or g) were determined and tabulated. Here, the subscript d1 indicates the first kind of dislocation flow units and gj expresses the jth kind of grain boundary flow units. The predictions of the theory were compared with experiment with good agreement. Concerning the activation enthalpies, it was found that ${\Delta}H_{d1}^{\neq}$ 〉{\Delta}H_{g1}^{\neq}$ and that the former agrees with the activation enthalpy for bulk self-diffusion whereas the latter agrees with the activation enthalpy for grain boundary self-diffusion. These facts support the adequacy of the authors' theory which is considered as a generalized theory of plastic deformation.
소성변형에 대한 저자들의 이론(제1보)을 요업재료, 금속, 합금 및 단결정들에 적용하였다. 그 결과 다중 결정에서는 dislocation 운동과 grain boundary 운동이 실험조건에 따라 함께 또는 분리되어 나타나는 반면 단결정에서는 dislocation 운동만 나타났다. 유동식에 나타나는 파라미터$({\alpha}_{d1},\;1/{\beta}_{d1})와\;({\alpha}_{gj}/X_{gj},\;1/{\beta}_{gj})$ (j = 1 or 2) 및 활성화엔탈피 ${\Delta}H_{k1}^{\neq}$ (k = d 혹은 g)를 구하여 예측한 소성변형은 실험과 잘 일치함을 보았다. 여기서 첨자 d1는 첫번째의 dislocation 유동단위, gj는 j번째 grain boundary 유동단위를 나타낸다. 활성화엔탈피에 대하여 ${\Delta}H_{d1}^{\neq}$는 bulk의 자체확산에 대한 활성화엔탈피와 일치하고 ${\Delta}H_{g1}^{\neq}$는 grain boundary 자체확산에 대한 활성화엔탈피와 일치하였다. 이 사실은 저자들의 이론의 정당성을 보이고 있다.