소성변형의 분자론 (제1보). 이론

Molecular Theory of Plastic Deformation (I). Theory

  • 김창홍 (한국과학원 화학 및 화학공학과) ;
  • 이태규 (한국과학원 화학 및 화학공학과)
  • 발행 : 1977.10.30

초록

고체의 소성변형을 설명하기 위하여 다음과 같은 가정을 하였다. (1) 고체의 소성변형은 크게 두 가지 기구 즉 dislocation 운동과 grain boundary 운동에 의하여 일어난다. (2) Dislocation 운동에 있어서 유동 단위들은 역학적 모형으로 나타내면 다종의 Maxwell 단위들의 평행연결형으로 되고 grain boundary 유동단위들도 다종의 Maxwell 단위들의 평행연결로 표현된다. 이를 물리적으로 설명하면 같은 부류의 유동단위들은 모두 같은 shear plane에서 같은 shear rate로 흐름을 의미한다. (3) Grain boundary 유동단위들과 dislocation 유동단위들 같은 서로 직렬 연결되어 있다. 이는 물리적으로 고체내에서 stress는 균일하게 작용하나 shear rate는 shear plane 의 종류(dislocation 운동면과 grain boundary 운동면)에 따라 달리 나타남을 의미한다. (4) Dislocation 유동단위들과 grain boundary 운동단위들의 운동은 그들의 흐름을 방해하는 장애물 근방의 원자 또는 분자들이 확산해 나가므로써 가능하게 된다. 이러한 가정하에 반응속도론을 적용하여 shear rate와 shear stress를 구하는 일반식을 도출하였다. 본 연구에서는 실제로 중요한 네가지 경우에 대하여 상기 도출한 일반식을 고찰하였다.

In order to elucidate the plastic deformation of solids, the following assumptions were made: (1) the plastic deformation of solids is classified into two main types, the one which is caused by dislocation movement and the other caused by grain boundary movement, each movement being restricted on a different shear surface, (2) the dislocation movement is expressed by a mechanical model of a parallel connection of various kinds of Maxwell dislocation flow units whereas the grain boundary movement is also expressed by a parallel connection of various kinds of Maxwell grain boundary flow units; the parallel connection in each type of movements indicates that all the flow units on each shear surface flow with the same shear rate, (3) the latter model for grain boundary movement is connected in series to the former for dislocation movement, this means physically that the applied stress distributes homogeneously in the flow system while the total strain rate distributes heterogeneously on the two types of shear planes (dislocation or grain boundary shear plane), (4) the movement of dislocation flow units and grain boundary units becomes possible when the atoms or molecules near the obstacles, which hinder the movement of flow units, diffuse away from the obstacles.Using the above assumptions in conjunction with the theory of rate processes, generalized equations of shear stress and shear rate for plastic deformation were derived. In this paper, four cases important in practice were considered.ted N${\cdot}{\cdot}{\cdot}$O hydrogen bond and the second of two normal N${\cdot}{\cdot}{\cdot}$O hydrogen bonds, both of which exist between the amino group and the perchlorate, groups. A p-phenylenediamine group is approximately planar within an experimental error and bonded to twelve perchlorates: ten perchlorates forming hydrogen bonds and two being contacted with the van der Waals forces. A perchlorate group is surrounded by six p-phenylenediamines and four perchlorates; among the six p-phenylenediamines, five of them are hydrogen-bonded, and the rest contacted with the van der Waals force.

키워드

참고문헌

  1. J. Appl. Phys. v.21 C. Herring
  2. J. Appl. Phys. v.34 R. L. Clble
  3. J. Appl. Phys. v.32 C. Folweiler
  4. J. Amer. Ceram. Soc. v.45 S.I. Warshaw;F. H. Norton
  5. J. Appl. Phys. v.36 W. D. Kingery;E. D. Montrone
  6. J. Appl. Phys. v.26 T. Ree;H. Eyring
  7. J. Appl. Phys. v.26 T. Ree;H. Eyring
  8. Amer. Soc. Civil Engineers Trans. v.128 F. H. Ree;T. Ree;H. Eyring
  9. Geol. Soc. Amer. Bull. v.78 S. J. Hahn;T. Ree;H. Eyring
  10. Rheology v.II T. Ree;H. Eyring;F. R. Eirich(ed)
  11. Proc. Nat. Acad. Soc. Korea. Spec. Pub. T. Ree
  12. Symp. High Polymer Physics. Sponsored by Center for Theoretical Phys. and Chem.
  13. Deformation Kinetics A. S. Krausz;H. Eyring
  14. J. Chem. Phys. v.4 H. Eyring
  15. Trans. AIME v.206 H. C. Chang;N. J. Grant
  16. Dislocations and Plastic Flow in Crystals A. H. Cottrell
  17. Trans. Metall. Soc. AIME v.239 R. C. Gifkins;K. U. Snowden
  18. J. Aust. Inst. Metals v.14 T. H. Alden
  19. Mechanical metallurgy G. E. Dieter