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ABSTRACT

A strategy for selecting subsets of variables from a given linear model in a
mixture system is discussed. The purpose is to achieve better fitting surfaces
for estimation of the response in an experimental region of interest. A criterion

is proposed for screening variables and illustrated with an example,

1. Introduction

This paper considers the problem of screening mixture components arising
in empirical investigations of the response relationship between a response and
a number of mixture variables. The functional relationship is assumed to be
approximated by the linear mixture model in the Scheffe form [9],1i.e.,

n(x)=x'8 (n
where x is a g-vector of input mixture variables, x’=(x1,X2....%), and f’'=
(B1, B2,....Bq) 1s a g-vector of unknown regression parameters. Note that the

possible mixtures are restricted to the regular (g-1)-dimensional simplex,

520, (i=1,2...,q); Sx=L 2
i=1

It is assumed that at the start of experimental investigation, data on a

large number of potentially important components are available and the ob-
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Jective is to reduce the number of important components for which the response
is fitted.

Suppose there are n>>¢ observations and each observed response, y, is deter-
mined by

y(x) =x'f+e. (3)
The error, €, is assumed to be identically and independently distributed with
mean zero and unknown variance, ¢2?, For all observations the model (3) may
be conveniently expressed as

Y=XB-+e
where Y is the n-vector of observed responses, X is the nX ¢ design matrix,
assumed to have full rank, and e is the n-vector of errors.

The problem of selecting a subset of variables in a linear multiple regression
model has been of interest to many applied statisticians. Draper and Smith
[2] discuss several criteria and procedures. Allen [1], Mallows [5], Helms
(3], Park [6] and others propose criteria, while Hocking [4] reviews several
criteria for selection of variables. Part of the philosophy of selecting ordinary
independent variables is applicable to the problem in mixture components.
However, because of the inherent constraints described in (2), the screening
philosophy of mixture variables would warrant special attention.

In a recent paper, Snee and Marquardt [117] suggest a strategy of determin-
ing ‘essential’ components in mixtures. The following section contains a brief
review and discussion of their strategy, which will in turn provide a motivation

for development of this paper.

2. Review of Screening Strategy

The idea by Snee and Marquardt [11] basically consists of hypothesis test-
ing of types of linear contrasts among the regression coefficients, B. One type
is that, if a coefficient g; is equal to the average of the remaining coefficients,
then the component x; has no effect on the response and it may be dropped

f rom the model. The null hypothesis may be written as
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Ho: fi=(g—~1) L6

Another type is that, if two or more coefficients are equal, then the associated
components have equal effects and their sum can be considered as one compo-
nent, thus reducing the number of essential components. The null hypothesis is,
for example,

Ho: Bi={;=0s
Snee and Marquardt further note that the null hypotheses may be written as
CB=0 where C is a mxq contrast matrix and each row of C is a linear con-
trast of B. The significance can be tested by F -statistic,

B0 IC(X'X)IC]E CB

mag?

where f=(X'X)"'X’Y and ¢?=Y'[I-X(X'X)'X"]Y/(n—9)-
We observe that some combination of the above two types of null hypotheses

would be also meaningful for screening purposes. For instance,

Ho: ﬂi:ﬁj

Bi+Bi=2(¢-2)% B

k#2i,J

If this set of hypotheses is accepted, it means that x; and x; may compose a

new component due to equal effects, which may be dropped from the model

because of no effect. In fact, there are a large variety of possible contrasts to
be tested.

The screening method described above reveals the following observations.

(i) The normality of y(x) in (3) should be assumed for hypothesis test-

ing.

(ii) It is possible that there exist different sets of contrasts that are accept-

ed by F-test, but it may be hard to choose which set should be

adopted to reduce the mixture components.

(i) If the performance of the fitted equation with selected variables over
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the entire region of simplex is of main interest, it is not clear which
set of contrasts should be chosen. For instance, suppose the null hypo-
theses C;8=0 and C:8=0, where C; is a mXgqand C; is a myXgq
contrast matrix, are both accepted. It is not unlikely that there may
be no clear-cut choice between the two hypotheses.
The objective of this paper is to propose a criterion to decide which set of
contrasts should be adopted to provide a better performance of the fitted re-
sponse surface over some region of experimental interest in the sense of mean

square error(MSE). For the proposed criterion, the normality of y(x) is not

necessarily assumed.
3. Formulation of a criterion

Suppose a set of linear contrasts (or generally linear constraints) are imposed

CB=0 ®

in which C is a mxgq matrix of rank m. Let B be the least squares estimator

on the parameter space, i.e.

of 8 under the restriction (4). Itis well known(see, for instance, Searle [107)
that § has the form of
B=B§ (5)
where B=I—(X'X)"1C’'[C(X'X)~1€"]"'C,and f=(X'X)"! X'Y
Since the primary interest is in the precision of response estimation, consider
the estimated response, §(x)=x’f, using the restricted estimator g in (5).
At an arbitrary point X on the region of interest R, the mean square error of
5(x) is
MSE[5(x)]=E(x'§—x'F)?
=0’x'B(X’X)'B'x+x’LCBL'C’' L’ x
where L=(X'X)"C'[C(X'X)"1]C’
To Compare the precision of (x) with that of 3(x)=x'§, we examine the
difference,

D(x)=MSE[ 3(x)]~MSE[ 5(x)]
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= {Var[ $(x)]—Var[ 5(x)]} — {squared bias of y(x)}
=o2x'[LC(x'x)C'L"]x
—x'LCBR'C'L'x. (7
The first term in (7) is non-negative, which implies that the response can be
estimated with smaller variance using #(x). However, the penalty is in bias,
the second term. So if one can be assured that bias does not become too much
of problem, then justification is provided for adopting the linear contrasts in
(4). This also implies that, if one is willing to accept some bias in trade for a
reduction in variance, then even if the linear contrasts are not true, one might
still prefer using them.
It is of interest to find when D(x)>0 at any point x. It can be readily
shown that
D(x)=x'L[0*C(X'X)1C'—CBB'C']L x. (8)
Thus, if the matrix 02C(X’X)"1C’'—CBF'C’ is positive semi-definite,it is possi-
ble to estimate the true response 7(x) in (1) with smaller MSE using 5(x)
at any arbitrary point x in the region R. It can be shown that
gcrLe(ere)ier}iCp<a? ®
is a necessary and sufficient condition that the matrix ¢?C(X’'X)"C'—CBE'C’
is positive semi-definite. Therefore, if (9) is satisfied, F(x) is a better estima-
tor of 7(x) than $(x) since D(x)>0 at point x.
In order to detect how well the estimator 5(x) performs over the whole
region R, cosider the difference between the integrated MSE’s of $(x) and

#(x) over the region R under a weighting function W(x),
K
J=—5—f, D@)aw (x)

where K‘lszd W(x). The W(x) may be treated as a probability distribution
function on R, and it allows for differential importance of the difference D(x)
at different points in the region,

Let M be the region moments defined by
M=K]J.xx' dW(x). (19)
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It can be shown from (7) that

K o -
J= g [ MSE[ 5(x)]—MSE[ 5(x)]}dW (x)
=IV—IB (11
where IV is the difference between the integrated variances of J(x) an

¥(x),
1V=K[x'LC(X'X)-C’L'xd W (x)

=Tr{LC(X’X)"'C'L’' M ]
and IB is the integrated bias of J(x),

— l ’ iTall ’
B=— [x' LCBBC' L xd W (x)

J— 1 17 ald ’

=—,—8'C'L'MLC,

and Tr denotes trace. Note that IV is the gain in precision from integrated
variance and IB is the loss in precision from integrated squared bias over the
region R. Therefore, a positive J tells that the drop in variance is not out-
weighted by the gain in bias, i.e., there is less error associated with the reduced
model using the linear contrasts C8=0.

Now we are looking for a set of linear contrasts C3=0 for which J becomes
large. For evaluation of J in practice, we need to know the unknown parame-
ters, 8 and g% Suppose that they may be estimated by § and G2 respectively.
Then the proposed criterion for screening mixture variables is “find the linear
contrast matrix C” which maximizes the quantity,

1
&2

J=Tr[LC(X'X)~C'L'M] — g c' L' MLCA (12)

where L= (X'X)-1C’'[C(X’X)-1C’]~! as defined before.

We observe that the hypothesis testing for C8=0 is not necessary for this
criterion. However, it is easy to see that if the null hypothesis C8=0 is re-
Jected, then the second term in (12) would be large, which would in turn
makes the overall J small. Therefore, in general, if C8=0 is accepted, J tends
to be large; otherwise, it becomes small.

We also observe that this criterion is characterized by the fact that the nor-
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mality assumption of y(x) is not necessary, and the overall performance of the
fitted response surface resulted from the linear contrasts is taken into account.

In the following section an example is illustrated to demonstrate the use of

this criterion.
4, An Example

The data for this example are the gasoline data which appeared in Snee and
Marquardt [11] as a ten-component simple screening design example. If we
take the weight function, W(x), to be uniform over the entire region of simplex

defined in (2), it can be shown (see Appendix) that the region moments in
(10) will be

M=K [xx’dx= (m:;)
where K‘lszdx and m;;=0. 01808 for all i and m;;=0. 00909 for all i==;. For this
particular example, the matrix X’X takes the similar form as M. The diagonal

elements of X’X are all 1.44611 and the off-diagonal elements are all equal to

Table 1: Single Linear Contrast (m=1)

Linear contrast F T LC(X'X)'C'L'M]  B'C'L'MLCB/5* J
Bs— B3:=0 0.0114 0.0072 0.0C01 0.0071
Bs— =0 0.1025 0. 0072 0.0C07 0.0065
Ba—5r=0 0. 2307 0.0072 0.0017 0. 0055
Ba— 37=0 0. 6220 0. 0072 0. 0045 0. 0027
B2— B10=0 1. 3234 0.0072 0.£0%5 —0.0023
Ba—53:/9=0 1.3482 0. 0072 0. C0%9 —0.0027
i=9
Ba— B1:=0 1. 6104 0. 0072 0.0116 —0.0C44
Ba—8:/9=0 2. 6854 0.0072 0.0197 —0.C125
ix8

0. 18376. First of all, consider a single linear contrast (m= 1), ie., C isalx10
matrix. In Table 1, the first eight best contrasts for F and J are listed and their
F and [ values are shown. Since the critical F value with (1, 21) degrees of

freedom for a 5% Type I error (notation: Fy.os(1, 21)) is 4.32, each one of the

contrasts in Table 1 is accepted by the F-test criterion. However, by the pro-
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posed J criterion in (12), the last four contrasts are not recommended, because |
takes negative values. Note that a negative J implies that the drop in variance
by imposing a linear contrast is not enough to offset the gain in precision by the
squared bias. Table 1 also shows that Tr[LC(X'X)"1M]=0.0072 for any

contrast. This is because of the special structure of the matrices of M and

S

X’X for this particular example.

Now consider a set of linear contrasts (m>2) where C' contains more than
one linear contrast. There are a large number of possible combinations. The
result obtained by a computer program written by the author is summarized in
Table 2. For each number of rows of the matrix C, the best set in terms of

F happens to be the best one for J, and they are given in Table 2 However,

Table 2: Linear Contrasts for 2<m<6

Number of
contrast, m

Contrasts

F

Foos(m,21)  J=Tr[LC(X'X)"'C'L'M 1— §'C'L' MLCS) 5>

2

Bs—Be=0
Ba—Bs=0

Bs—Bs=0
Be—Bs=0
Ba—B7=0

Bs—Bs=0
Bs—Bs=0
Ba—p7=0
Bz—Bi1o=0

Bs— Bs=0
Be=P1=5:
ﬁs—lg_eﬁj/gz()

Bs —J_};gﬁf/ 9=0

Bs—Bs=0
Bz=Pps=Br=L10
ﬂﬂ—};;ﬁ:/g=0

,Bs—j%.ei/ 9=0

0. 0570

0.1149

0.4170

1. 2332

1. 8857

3. 47

3.07

2.68

0.0136=0. 0144—0. 0008

0.0191=0. 0216—0. 0025

0.0168==0. 0288—0. 0120

—0. 0090=0. 0360—0. 0450

~0.0383=0. 0432—0. 0815
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in general, this is not necessarily true.

We observe that every set of the contrasts listed in Table 2 is accepted by
the F-test and it is not clear which set should be used to reduce the number
of mixture variables. By the ] criterion, it is easily observed that the set cor-
responding to m=3 is recommended since J reaches the maximum. If one in-
tends to reduce more variables, the set for m=4 is a good choice. The sets for
m=>5 and 6 are not recommended because they produce negative J values. If
one chooses the contrasts corresponding to m=3, then the gasoline data may be
analyzed as a seven-component system, since the sums of components(5 and 6),

(8 and 9) and (4 and 7) may be treated as three new components.

5. Discussion

When we search for the contrast matrix € which makes J large, we first
note that J is dimensionless and unaffected by a change of scale of the ele-
ments of €. This indeterminacy can be removed without loss of generality by
imposing the constaint

C(X’X)C'=1I (13)
For a given matrix C observe that, if C(X’X)"C’=HH' where H is an
mx m nonsingular matrix, there always exists a corresponding matrix C=H-1 ¢
such that C(X’X)"C"=1.

With the restriction (13), the J-statistics in (12) may be written as

J=Tr[(X'X)-1C'C(X’'X)'M] —«&%— FCC(X'X) "\ M(X'X)1C'CB. (14)

Frequently one is interested in the estimated responses at the design points
only. If the weight function W(x)=1/n at the data points and W(x)=0 els
ewhere, then
M=K xx' dW(x)
=X"'X/n.
Substituting this A into (14), we obtain

J= 4 THL(X X))~ 5 fCICH

ng?
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Tk
I&
=
g

= (rank of C)/n—mF/n

=m(1—F)/n
where m is the rank of C and F is the F-statistic described in Section 2, Note
that for this particular case of M=X"X/n, linear contrasts C8=0 are adopted
for purposes of screening variables if /.1 This is a more restrictive condition
than the usual F-test.

Let the matrix € which maximizes the first term in (14) be called ‘all var-
iance matrix’ and the € which minimizes the second term in (14) be called
‘all bias matrix’. It is of theoretical interest to find the optimal matrices.

Let A denote the diagonal matrix of eigenvalues, 2;, of X’X and T denote
the corresponding orthogonal matrix of eigenvectors. That is,

T"X’XT=A and T'T=TT —=1I
where A=diag(41, 42,...,4,). We assume that the mixture components are
arranged so that the magnitude of the eigenvalues is A;>A>...>1,>0.
Also let the ith column of matrix T be denoted by #;. Then one can write
X' X)) '=TA T =TA A =T,
Now the first term in (14) may be written as

Trl(X’X)"1CC(X'X)*M]=Tr[C(X' X)) M(X'X)"1C"]

=S (X' X)) T M(X X )y
i=1

S TAS AT MT A A T,
i=1

1

where r’; is the ith row of matrix C,a/=r";TA"7 and V=A"zT"MTA-:. Note
that a@’;a;=1 from the constraint (13). It is known from the matrix theory
(see, for instance, Rao [7]) that «a’;Va; is maximized if a;=p; where p, is
the eigenvector corresponding to the largest eigenvalue of matrix V. Therefore,

from a’y=r"1TA t=p, the first row of ‘all variance matrix’ will be

1
r'i=vA= T’
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and similarly we can obtain that the ‘all variance matrix’ C is
( v'lw
v'i| s
C=| . 'l/lf T.
v

The second term in (14) becomes zero if Cﬁ:O. Therefore, the ‘all bias

matrix’ C has independent rows which are orthogonal to B,
C={r'1:r.f=0 for i=1,2,...,m}.

Lastly, it should be mentioned that the development so far was discussed in
terms of the linear mixture model in (1); however,the screening strategy, in
general, may be applicable to a higher order mixture model (quadratic, cubic,
etc.). Note that the matrix C is not necessarily restricted to linear contrasts. It
can be any type of linear constraints. In particular, for a higher order model,
the zero restriction(for instance, dropping the variable x;x; if B;;=0 is adopted)
may well be used. For screening polynomial terms for a high orcer mixture
model, it would be interesting to compare the results obtained by this strategy

with those obtained from the Park’s method [6].
Appendix

The elements of the M matrix defined in (10) are of the form
M=Klrx19x50 . . x5 dx1dxa. . . dxg
and
_IZJ‘Rdx1dx2. Lo dx,
if W(x) is assumed to be unifcrm over scme regicn of interest, R. Let R
denote the (g-1)-dimensional simplex described in (2). For computational pur-

poses R may be written as
q-1
R*: {<X1, X2y 000y Xq_l) M xi\,,O and in(l}
i=1

g-1
since xg=1—2 x:.
i=1

It is is known (see, for instance, Ryzhik and Gradshtein [8]) that
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b1 j— ]]P(ﬁ;) 1 -1
fn*ﬂxlp dxldXz. cen dxq-l_ Wfoy(}:p‘) dy
where the sums (X)) and products (/) are over i=1,2, .. .,g—1. For exam-
ple, consider fk*xf dx* where dx*=dxdx,...dxs. Since $i=3 and p;=1 for

J=i, we can obtain that

2 7.k 2! ' 1 — 2
fk*"idx = TorJ. =11y
Similarly, it can be readily shown that, for j==,
1 1
fR*xixjdx*: 11! andfkdx* :‘9—!—.

Therefore, in the example in Section 4,
ma=KJ xdx = (5-) (91)=0. 01818
and

miz= K [oxix,dx = (—% )(91)=0. 00909,
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