Studies on the Indirect Measuring Method of the Maximum Voluntary Ventilation

최대환기능의 간접측정법에 관한 연구

  • Park, Hae-Kun (Department of Physiology, School of Medicine, Chungnam National University) ;
  • Kim, Kwang-Jin (Department of Physiology, School of Medicine, Chungnam National University) ;
  • Sung, Hae-Sook (Department of Physiology, School of Medicine, Chungnam National University) ;
  • Jeon, Byung-Sook (Department of Physiology, School of Medicine, Chungnam National University)
  • 박해근 (충남대학교 의과대학 생리학교실) ;
  • 김광진 (충남대학교 의과대학 생리학교실) ;
  • 성혜숙 (충남대학교 의과대학 생리학교실) ;
  • 전병숙 (충남대학교 의과대학 생리학교실)
  • Published : 1977.12.31

Abstract

The maximum voluntary ventilation (MVV) is one of the most widely used pulmonary function test, but its measuring method was very difficult and unreliable. However, it is need to get more easy and simple measuring method of MVV. Therefore, this study was attempted to get more easy and simple measuring method of MVV by means of the forced expiratory volume $(FEV_{T})$. The young and healthy 1,000 Korean students(592 male and 408 female) were cheesed for this purpose and whose ages were from 8 to 20 years. A spirometer (9L, Collins Co.) was used for the MVV and FEV, and they were measured 3 times at standing position, and the highest value was used. In the measurements, the subjects for MVV were asked for the breath as fast and deeply as possible for 12 seconds, and for FEV were asked for the rapid and forceful exhalation after a maximal inhalation (forced expiratory curve). In the FEV measurements toward the end of the expiration, the subjects were exhaused to continue the effort until no further gas was expired. During these measurements, the investigator stood by the subject to give a constant encouragement. FEV were calculated in the volume exhaled during the one-half $(FEV_{0{\cdot}5,}\;ml)$, the first second $(FEV_{1{\cdot}0,}\;ml)$ and the percentage of the total vital capacity exhaled during the one-half second $(FEV_{0{\cdot}5,}\;%)$. The results are summarized as follows: 1) The values of MVV were increased linearly with ages until 20 in both sexes. The values of male at the age of 20 was $168.2{\pm}2.5L/min$, and female at the age of 17 was $112.3{\pm}3.0L/min$, respectively. 2) The values of FEV (ml) were increased linearly with ages until 20 in both sexes. The values of $FEV_{0{\cdot}5}$ were $2,797{\pm}65.7ml$ in the male of 20 years and were $2,088{\pm}54.6ml$ in the female of 17 years, and of $FEV_{1{\cdot}0$ were $4,119{\pm}68.2ml$ in the male of 20 years and were $2,897{\pm}65.9ml$ in the female of 17 years, respectively. 3) The correlation coefficients between MVV and $FEV_{0{\cdot}5}\;or\;FEV_{1{\cdot}0$ (ml) were 0.82 or 0.85 in the male, and 0.77 or 0.79 in the female, respectively. 4) The prediction formulae for MVV to be derived from above results were: For male: MVV (L/min) =7.19+$0.05{\times}FEV_{0\cdot5}(ml)$, MVV (L/min)=11.25+$0.04{\times}FEV_{1\cdot0}(ml)$ For female: MVV (L/min)=16.03+$0.05{\times}FEV_{0\cdot5}(ml)$, MVV (L/min)=9.47+$0.03{\times}FEV_{1\cdot0}(ml)$.

Keywords