A Note on c-semidevelopable spaces and c-first countable spaces

by Heung Ki Kim

Kang Won National University, Chun Cheon, Korea

By Robert W. Heath (1) and Charles C. Alexander (2), a space X is semidevelopable if and only if X is first countable and semistratifiable, and by Harold W. Martin (3), the c-semistratifiable space was introduced.

Thus the following diagram is described:

$$semidevelopable \longleftrightarrow \begin{cases} semistratifiable \longrightarrow c\text{-semistratifiable} \\ first \ countable \end{cases}$$

In this paper we will define c-semidevelopable space and c-first countable space, and then we will be shown that the following diagram holds:

$$\begin{array}{c} \text{semidevelopable} \xrightarrow{\text{semistratifiable}} & \text{C-SEMIDEVELOPABLE} \xrightarrow{\text{c-semistratifiable}} & \text{point is } G\delta \\ \hline \\ \text{C-FIRST COUNTABLE} \end{array}$$

1. Definitions and characterizations.

We adopt the convention that F is a closed set and K is a closed and compact set in this paper.

Definition 1. For a space X, $g: N \times X \longrightarrow \mathcal{F}$ is a countably open cover (COC) function provided that $x \in g(n, x)$ for each $x \in X$ and n, and $g(n+1, x) \subset g(n, x)$.

Definition 2. A space X is semidevelopable iff there is a sequence $\{\gamma_1, \gamma_2, \dots\}$ of covers of X such that $\{st(x, \gamma_n); n=1, 2, \dots\}$ forms a local system of neighborhood at x for each $x \in X$. Equivalently,

there exists a sequence $\{\gamma_1, \gamma_2, \dots\}$ of cover of X such that $x \in st(x, \gamma_n)^\circ$ for each $x \in X$ and if $x \in U$ for some open set U then there exists n such that $st(x, \gamma_n) \subset U$.

Definition 3. A space X is semistratifiable iff there is a sequence $\{g_n\}_{n=1}^{\infty}$ of function from X into the collection of open sets of X such that (1) $\bigcap_{n=1}^{\infty} g(n, x) = cl\{x\}$ for each x, and (2) if y is a point of X and $\{x_n\}_{n=1}^{\infty}$ is a sequence of points in X, with $y \in g(n, x_n)$ for all n, then $\{x_n\}_{n=1}^{\infty}$ converges to y. (This definition is the characterized from by Geoffrey D. Creede.) Equivalently,

 $F = \bigcap_{n=1}^{\infty} g(n, F)$ and if $x \in X - F$ then there exists n such that $x \notin g(n, F)$.

Definition 4. A space X is first countable iff $F \cap \{x\} = \phi$ then there exists n such that $F \cap g(n, x) = \phi$. Equivalently,

if $x \in U$ for some open set there exists n such that $g(n, x) \subset U$. (Or, if $x_n \in g(n, x)$ then $\{x_n\}$ converges to x.)

Definition 5. A space X is c-semistratifiable if there is a sequence $\{g(n, x) : x \in X, n=1, 2, \dots\}$ of open subsets of X which satisfies the following conditions:

- (1) $x \in g(n, x)$
- (2) $g(n+1, x) \subset g(n, x)$
- (3) If A is a closed compact subset of X and $x \in X A$, then there exists n such that $x \notin g(n, a)$ for each $a \in A$.

Equivalently,

 $K = \bigcap_{n=1}^{\infty} g(n, k)$ and if $\{x\} \cap K = \phi$ then there exists n such that $x \cap g(n, K) = \phi$.

Definition 6. A space X is c-semidevelopable iff there is a sequence $\{\gamma_1, \gamma_2, \dots\}$ of cover of X such that $x \in st(x, \gamma_n)^\circ$ for each $x \in X$ and if $x \in U$ for some cocompact open set U then there exists n such that $st(x, \gamma_n) \subset U$.

Equivalently,

there is a sequence $\{\gamma_1, \gamma_2, \dots\}$ of covers of X such that $x \in st(x, \gamma_n)^\circ$ for each $x \in X$ and if $x \notin K$ then there exists n such that $K \cap st(x, \gamma_n) = \phi$.

Definition 7. A space X is c-first countable iff $K \cap \{x\} = \phi$ then there exists n such that $K \cap g(n, x) = \phi$.

Equivalently,

if V is the complement of closed and compact set and $x \in V$, then there exists n such that $g(n, x) \subset V$.

Definition 8. A space X is a q-space iff $x_n \in g(n, x)$ for $n=1, 2, \dots$, then the sequence $\{x_n\}$ has a cluster point.

2. The relations between the spaces in diagram.

Theorem 1. If X is a c-semidevelopable space then X is a c-first countable space.

proof. Let $g(1, x) = st(x, \gamma_1)^\circ$, $g(2, x) = st(x, \gamma_1)^\circ \cap st(x, \gamma_2)^\circ$,, $g(n, x) = st(x, \gamma_1)^\circ \cap \cdots \cap st(x, \gamma_n)^\circ$. Then g is a COC function and $g(n, x) \subset st(x, \gamma_n)$. Also, if $K \cap \{x\} = \phi$ for any K, then there exists n such that $\phi = K \cap st(x, \gamma_n) \supset K \cap g(n, x)$. Therefore X is a c-first countable.

Theorem 2. If X is a c-semdevelopable space, then X is a c-semistratifiable space.

proof. Take a function g as theorem 1. If $\{x\} \cap K = \phi$ for any K, then there exists n such that $\{x\} \cap \operatorname{st}(K, \gamma_n) = \phi$. Because, $x \in \operatorname{st}(K, \gamma_n)$; iff $\exists y \in K$ such that $x \in \operatorname{st}(y, \gamma_n)$; iff $\exists y \in K$ such that $y \in \operatorname{st}(x, \gamma_n)$ iff $K \cap \operatorname{st}(x, \gamma_n) \neq \phi$. This contradicts to the hypothesis. Hence $\{x\} \cap \operatorname{st}(K, \gamma_n) = \phi$. But $\{x\} \cap \operatorname{g}(n, K) \subset \{x\} \cap \operatorname{st}(K, \gamma_n) = \phi$. Therefore X is a c-semistratifiable.

Theorem 3. If X is a c-first countable and c-smistratifiable space, then X is a c-semidevelopable space.

proof. Let f be a COC function such that if $K \not\ni x$ then there exists n such that $K \cap f(n, x) = \phi$. And let g be a COC function such that if $x \not\in K$ then there exists n such that $x \not\in g(n, K)$.

Define $l(n, x) = g(n, x) \cap f(n, x)$ and take $\gamma_1 = \{\{x, y\} \mid x \in l(n, y) \text{ or } y \in l(n, x)\}$. Then $st(x, \gamma_n) = \{y \mid x \in l(n, y) \text{ or } y \in l(n, x)\} = \{y \mid x \in l(n, y)\} \cup \{y \mid x \in l(n, x) = l(n, x) \cup y \mid x \in l(n, y)\}$. Therefore

 $st(x, \gamma_n)^{\circ} \supset l(n, x) \ni x$, and if $x \notin K$ then there exists n such that $K \cap st(x, \gamma_n) = \phi$.

Theorem 4. Any point is G, set iff there exists a COC function $g: N \longrightarrow \mathcal{F}$ such that if $x \neq y$ then there exists n such that $y \notin g(n, x)$.

proof. necessity. Let G_n be a sequence of open sets such that $\{x\} = \bigcap_{n=1}^{\infty} G_n$ for each x. If we take $G_n = g(n, x)$, then $\bigcap_{n=1}^{\infty} g(n, x) = \{x\} = \bigcap_{n=1}^{\infty} G_n$.

Sufficiency. Let $G_1=g(1,x)$, $G_1\cap G_2=g(2,x)$,, $G_1\cap \cdots \cap G_n=g(n,x)$,, then $g: N\times X\longrightarrow \mathcal{F}$ is a COC function and since $\{x\}=\bigcap_{n=1}^{\infty}G_n=\bigcap_{n=1}^{\infty}g(n,x)$, there exists n such that if $x\neq y$ then $y\notin g(n,x)$.

Theorem 5. In a regular q-space, the followings are equivalent:

- 1) first countable
- 2) $x_n \in g(n, x) \Longrightarrow cl\{x_n\} \subset \{x\}$
- 3) c-first countable
- 4) point is G

proof. 1) \Rightarrow 2): Clear.

2) \Rightarrow 3): Let $x_n \in g(n, x)$ and $x \in U$ where U is a cocompact open set. Assume $\{i \mid x_i \notin U\}$ is infinite; $\{x_i \mid x_i \in X - U\}$ is infinite. Since X - U is a compact set, $\{x_i \mid x_i \in X - U\}$ has a cluster point z which is different from x in X - U. This contradicts to cl $\{x_n\} \subset x$. Hence there exists n such that $g(n, x) \subset U$.

3) \Rightarrow 4): Since y is a closed and compact set and $y \neq x$, there exists n such that $\{y\} \cap g(n, x) = \phi$.

4) \Rightarrow 1) By D.J. Lutzer (4).

3. Examples.

Let X be \mathbb{R}^2 with a topology as follows: $x \neq 0$ (0 is origin), $\{g(n, x) = S\left(x, \frac{1}{n}\right) | n \in \mathbb{N}\}$ is a local base at x and U is a neighborhood of 0 iff $U \cap I_e$ contains an open interval containing 0, where $I_e = a$ straight line through 0 intersecting x-axis with angle θ for any θ .

Then X is a c-first countable but not first countable.

References

- Robert W. Heath, Arc-wise connectedeness in semimetric spaces, Pacific J. Math. vol 12(1962), 1301-1319.
- Charles C. Alexander, Semidevelopable space and quotient images of metricspaces, Pacific J. Math. vol 37 (1971), 277-293.
- 3. Harold W.Martin, Metrizability of M-spaces, Canad. J. Math. vol 25 (1973) 840-841.
- 4. D.J. Lutzer, Semimetrizable and stratifiable spaces, General Topology and Appl, 1(1971), 43-48.
- 5. R.E. Hodel, Spaces defined by sequences of open covers which guarentee that certain sequences have cluster points, Duke Math. J. vol 39(1972), 253-263.
- 6. Geoffrey D. Creede, Concerning semistratifiable spaces, Pacific J. Math. vol 32 (1970), 47-54.
- 7. C. Borges, On stratifiable spaces, Pacific J. Math. vol 17 (1966), 1-16.
- 8. Michal Henry, Stratifiable spaces, semistratifiable spaces and thier relation through mappings, Pacific J. Math vol 37 (1971), 697-700.
- 9. J. Kelley, General Topollgy, Van Nostrand, 1955.